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Abstract

In this paper, we derive analytically the dynamical laws of the coupled Gross-
Pitaevskii equations (CGPEs) without/with an angular momentum rotation term and
an external magnetic field for modelling nonrotating/rotating spin-1 Bose-Eintein con-
densates. We prove the conservation of the angular momentum expectation when the
external trapping potential is radially symmetric in two dimensions and cylindrically
symmetric in three dimensions; obtain a system of first order ordinary differential
equations (ODEs) governing the dynamics of the density of each component and solve
the ODEs analytically in a few cases; derive a second order ODE for the dynamics of
the condensate width and show that it is a periodic function without/with a perturba-
tion; construct the analytical solution of the CGPEs when the initial data is chosen as
a stationary state with its center-of-mass shifted away from the external trap center.
Finally, these dynamical laws are confirmed by the direct numerical simulation results
of the CGPEs.

Key Words: rotating spin-1 Bose-Einstein condensate, coupled Gross-Pitaevskii equa-
tions, angular momentum rotation, condensate width, angular momentum expectation.

1 Introduction

The experimental realization of Bose-Einstein condensates (BECs) in magnetically trapped
atomic gases at ultra-low temperatures [1, 12, 16] has spurred great excitement in the
atomic physics community and renewed the interest in studying the macroscopic quantum
behavior of atoms. In earlier BEC experiments, the atoms were confined in a magnetic
trap, in which the spin degree of freedom is frozen. The particles are described by a scalar
model and the wave function of the particles is governed by the Gross-Pitaevskii equation
(GPE) within the mean-field approximation [30, 18, 29]. One of the most important
recent developments in BEC was the study of spin-1 and spin-2 condensates. In contrast
to a single component BEC, a spin-F BEC is described by the coupled Gross-Pitaevskii
equations (CGPEs) which consist of 2F + 1 equations, each governing one of the 2F + 1
hyperfine states (mF = −F,−F + 1, . . . , F − 1, F ) within the mean-field approximation
[19, 28]. The spin-1 BEC was realized in experiments recently by using both 23Na and
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87Rb [23, 31]. In fact, the emergence of spin-1 BEC has created great opportunities for
understanding degenerate gases with internal degrees of freedom [19, 5, 6, 13, 15, 20].

In this paper, we consider a rotating spin-1 BEC confined in an external trapping
potential Vext(x, y, z) = mb

2 (ω2
xx

2 + ω2
yy

2 + ω2
zz

2) with mb the mass of BEC atoms,
ωx, ωy and ωz the trapping frequencies in x-, y- and z-direction, respectively. We as-
sume that the interactions within the spin-1 BEC include the mean-field interaction with
c0 = 4πh̄2(a0 + 2a2)/3mb (positive for repulsive interaction and negative for attractive
interaction) and the spin-exchange interaction with c2 = 4πh̄2(a2 − a0)/3mb (positive for
anti-ferromagnetic interaction and negative for ferromagnetic interaction) where h̄ is the
Planck constant, a0 and a2 are the s-wave scattering lengths for scattering channel of
total hyperfine spin 0 (anti-parallel spin collision) and spin 2 (parallel spin collision), re-
spectively. For temperatures below the critical temperature, the dynamics of the rotating
spin-1 BEC is well described by the dimensionless Gross-Pitaevskii equation (GPE) with
an angular momentum rotational term in the d-dimension [19, 6, 5]

i∂tψ1(x, t) =

[
−1

2
∇2 + V (x) + E1 − ΩLz + βn ρ+ βs(ρ1 + ρ0 − ρ−1)

]
ψ1

+βsψ
∗
−1ψ

2
0 +Bψ0, (1.1)

i∂tψ0(x, t) =

[
−1

2
∇2 + V (x) + E0 − ΩLz + βn ρ+ βs(ρ1 + ρ−1)

]
ψ0

+2βsψ−1ψ
∗
0ψ1 +B (ψ1 + ψ−1) , x ∈ R

d, t > 0, (1.2)

i∂tψ−1(x, t) =

[
−1

2
∇2 + V (x) + E−1 − ΩLz + βn ρ+ βs(ρ−1 + ρ0 − ρ1)

]
ψ−1

+βsψ
∗
1ψ

2
0 +Bψ0, (1.3)

ψj(x, 0) = ψ0
j (x), x ∈ R

d, j = −1, 0, 1. (1.4)

Here, Ψ = Ψ(x, t) := (ψ1(x, t), ψ0(x, t), ψ−1(x, t))
T is the dimensionless wave function of

the rotating spin-1 BEC, ρj = ρj(x, t) := |ψj(x, t)|2 is the density of the hyperfine spin
component mF = j (j = −1, 0, 1) and ρ = ρ1 + ρ0 + ρ−1 is the total density. Ω is the
dimensionless angular momentum rotation speed, Ej ∈ R is the dimensionless Zeeman
energy of spin component mF = j (j = −1, 0, 1) in the uniform external magnetic field,
B ∈ R is the dimensionless external Ioffe-Pitchard magnetic field, and βn and βs are the
dimensionless mean-field and spin-exchange interaction constants, respectively. f∗ denotes
the conjugate of the function f and Lz is the z-component of the dimensionless angular
momentum rotation defined as

Lz = −i(x∂y − y∂x) = −i ∂θ := −i L̂z with L̂z = (x∂y − y∂x) = ∂θ, (1.5)

where (r, θ, z) is the cylindrical coordinates when d = 3, and resp. (r, θ) is the polar
coordinates when d = 2. The above dimensionless quantities in three dimensions (3D) are
obtained by scaling the length by the harmonic oscillator length as =

√
h̄/mbω, the time

by ω−1 and the energy by h̄ω with ω = min{ωx, ωy, ωz}. If Ω = 0, the CGPEs (1.1)-(1.3)
describes a BEC in the nonrotating frame and d can be chosen as d = 3, 2 or 1; on the
contrary, if Ω 6= 0, it is for a BEC in the rotating frame and d can be chosen as d = 3 or 2.
In fact, the two-dimensional (2D) CGPEs can be viewed as a quasi-3D experimental setup
with a strong confinement in the z-direction, i.e. ωy ≈ ωx and ωz ≫ ωx [9, 6, 8, 7]; and
the one-dimensional (1D) CGPEs when Ω = 0 can be viewed as a quasi-3D experimental
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setup with strong confinement in both y- and z-directions, i.e. ωy ≫ ωx and ωz ≫ ωx

[9, 6, 8, 7]. The dimensionless potential V (x) takes the form

V (x) =
1

2





γ2
xx

2, d = 1,
γ2

xx
2 + γ2

yy
2, d = 2,

γ2
xx

2 + γ2
yy

2 + γ2
zz

2, d = 3;
(1.6)

with γx = ωx

ω , γy =
ωy

ω , γz = ωz

ω . The parameters

βn = Cd
4πN(a0 + 2a2)

as
, βs = Cd

4πN(a2 − a0)

as
, (1.7)

with N the total number of particles in the spin-1 condensate and

Cd =





≈ √
γyγz/2π, d = 1,

≈
√
γz/2π, d = 2,

1, d = 3.

(1.8)

Two important invariants of the CGPEs (1.1)-(1.4) are the normalization of the wave
function [19, 5]

NΨ(t) = ‖Ψ‖2 :=

∫

Rd
|Ψ(x, t)|2dx =

∫

Rd

1∑

j=−1

|ψj(x, t)|2dx

≡
∫

Rd

1∑

j=−1

|ψ0
j (x)|2dx = NΨ(0) = 1, t ≥ 0 (1.9)

and the energy per particle

EΨ(t) =

∫

Rd

[
1∑

j=−1

(
1

2
|∇ψj|2 + (V (x) + Ej) |ψj |2 − Ω Re(ψ∗

jLzψj)

)

+
βn

2
ρ2
0 +

βn + βs

2

(
ρ2
1 + ρ2

−1 + 2ρ0(ρ1 + ρ−1)
)

+ (βn − βs)ρ1ρ−1

+2βsRe(ψ∗
−1ψ

2
0ψ

∗
1) + 2BRe (ψ∗

0(ψ1 + ψ−1))

]
dx ≡ EΨ(0), t ≥ 0, (1.10)

where Re(f) denotes the real part of the function f . In addition, when B = 0, another
important invariant is the total magnetization [19, 5, 6]

MΨ(t) =

∫

Rd

1∑

j=−1

j |ψj(x, t)|2 dx =

∫

Rd

[
|ψ1(x, t)|2 − |ψ−1(x, t)|2

]
dx

≡
∫

Rd

[
|ψ0

1(x)|2 − |ψ0
−1(x)|2

]
dx = MΨ(0), t ≥ 0 (1.11)

with −1 ≤MΨ(0) ≤ 1.
In the effort of exploring the rich properties of spinor dynamics, various numerical

and theoretical studies have been carried out in the last few years. From a numerical
point of view, different efficient and accurate numerical methods have been proposed for
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computing the ground state and dynamics of spin-1 BEC (cf. [38, 39, 9, 6, 5, 34] and
references therein). From a theoretical point of view, different properties of spin-1 BEC
have been investigated, e.g. the coreless vortices [24, 13], the quantum tunneling phenom-
ena in double well potential [27], the interaction of soliton solutions [33, 14], single mode
approximation (SMA) and coherent dynamics [22, 25], the effect of finite temperature in
the context of Bogoliubov-de-Gennes framework [26] and so on. To our knowledge, there
are very few rigorous mathematical results for the CGPEs (1.1)-(1.3) of the dynamics of
spin-1 BEC. The aim of this paper is to study mathematically the dynamical properties
of spin-1 BEC based on the CGPEs (1.1)-(1.3) including time evolution of the density of
each component, expected value of angular momentum (or angular momentum expecta-
tion) and condensate width as well as the construction of an analytical solution when the
initial data is chosen as the stationary state with its center-of-mass shifted from the trap
center. We remark that similar mathematical results have been carried out recently for
GPE of single-component BEC [10, 3] and CGPEs of two-component BEC [37, 2].

The paper is organized as follows. In Section 2, we derive a system of first-order
ordinary differential equations (ODEs) for the dynamics of the density of each component
and other related quantities. The ODE system is analytically solved for a few cases. In
Section 3, we prove the conservation of the angular momentum expectation when the
external trap is radially symmetric in 2D and cylindrically symmetric in 3D. In Section 4,
we obtain a second-order ODE for the dynamics of the condensate width and show that
the condensate width is a periodic function in 1D without nonlinearity and in 2D when
the trap is radially symmetric. An analytical solution is constructed for the CGPEs when
the initial data is chosen as a stationary state with its center-of-mass shifted from the
trap center in Section 5. In Section 6, some numerical results on the dynamics of spin-1
BEC are reported to confirm the analytical results. Some concluding remarks are drawn
in Section 7.

2 Dynamics of the mass of each component

Define the mass (or density) of the spin component mF = j as

Nj(t) :=

∫

Rd
|ψj(x, t)|2 dx, t ≥ 0, j = −1, 0, 1. (2.1)

It is easy to see that, when βs = 0 and B = 0 in the CGPEs (1.1)-(1.3), the mass of each
spin component is conserved, i.e.

Nj(t) =

∫

Rd
|ψj(x, t)|2 dx ≡

∫

Rd
|ψ0

j (x)|2 dx := N
(0)
j , t ≥ 0, j = −1, 0, 1. (2.2)

In order to get a closed system for the above quantities, we also define the following
quantities which may have physical meaning but we will not discuss it here for brevity:

Pl,k(t) = i

∫

Rd
[ψ∗

l (x, t)ψk(x, t) − ψl(x, t)ψ
∗
k(x, t)] dx, (2.3)

Ql,k(t) =

∫

Rd
[ψ∗

l (x, t)ψk(x, t) + ψl(x, t)ψ
∗
k(x, t)] dx, −1 ≤ l < k ≤ 1, (2.4)

P (t) = P−1,0(t) + P0,1(t), Q(t) = Q−1,0(t) +Q0,1(t), t ≥ 0, (2.5)
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and denote

p0 =
E1 − E−1

2
, q0 =

E1 + E−1 − 2E0

2
. (2.6)

For the dynamics of the mass (or density) of each component, we have the following
lemmas:

Lemma 2.1 Suppose Ψ(x, t) is the solution of the CGPEs (1.1)-(1.4), then we have

N ′
1(t) −BP0,1(t) = F1(t), (2.7)

N ′
0(t) +B[P0,1(t) − P−1,0(t)] = −2F1(t), (2.8)

N ′
−1(t) +BP−1,0(t) = F1(t), (2.9)

P ′
0,1(t) − 2B [N0(t) −N1(t)] +BQ−1,1(t) − (E1 − E0)Q0,1(t) = F2(t), (2.10)

P ′
−1,0(t) + 2B [N0(t) −N−1(t)] −BQ−1,1(t) + (E−1 − E0)Q−1,0(t) = −F2(t), (2.11)

P ′
−1,1(t) −B [Q−1,0(t) −Q0,1(t)] − (E1 − E−1)Q−1,1(t) = F3(t), (2.12)

Q′
0,1(t) −BP−1,1(t) + (E1 − E0)P0,1(t) = F4(t), (2.13)

Q′
−1,0(t) +BP−1,1(t) − (E−1 − E0)P−1,0(t) = −F4(t), (2.14)

Q′
−1,1(t) −B[P0,1(t) − P−1,0(t)] + (E1 −E−1)P−1,1(t) = F5(t), t ≥ 0, (2.15)

with initial conditions

Nj(0) =

∫

Rd
|ψ0

j (x)|2dx := N
(0)
j , j = −1, 0, 1, (2.16)

Pl,k(0) = i

∫

Rd

[
(ψ0

l (x))∗ψ0
k(x) − ψ0

l (x)(ψ0
k(x))∗

]
dx := P

(0)
l,k , (2.17)

Ql,k(0) =

∫

Rd

[
(ψ0

l (x))∗ψ0
k(x) + ψ0

l (x)(ψ0
k(x))∗

]
dx := Q

(0)
l,k , −1 ≤ l < k ≤ 1, (2.18)

and

F1(t) = 2βs

∫

Rd
Im
(
ψ∗
−1ψ

2
0ψ

∗
1

)
dx, t ≥ 0, (2.19)

F2(t) = 2βs

∫

Rd
Re
[
ρ0ψ0

(
ψ∗

1 + ψ∗
−1

)
− 2

(
ρ−1ψ0ψ

∗
1 + ρ1ψ0ψ

∗
−1

)]
dx, (2.20)

F3(t) = 2βs

∫

Rd
Re
[
2 (ρ1 − ρ−1)ψ1ψ

∗
−1 + (ψ∗

0)
2
(
ψ2
−1 − ψ2

1

)]
dx, (2.21)

F4(t) = 2βs

∫

Rd
Im [ρ0ψ

∗
0 (ψ1 − ψ−1) − 2 (ρ−1ψ

∗
0ψ1 − ρ1ψ

∗
0ψ−1)] dx, (2.22)

F5(t) = 2βs

∫

Rd
Im
[
2 (ρ1 − ρ−1)ψ

∗
−1ψ1 − (ψ∗

0)
2
(
ψ2

1 + ψ2
−1

)]
dx, (2.23)

where Im(f) denotes the imaginary part of the function f .

Proof: Differentiating (2.1) with respect to t for j = 1, integrating by parts and noticing
(1.1)-(1.3), we obtain

N ′
1(t) =

∫

Rd
(ψ1∂tψ

∗
1 + ψ∗

1∂tψ1) dx = i

∫

Rd
[(−i∂tψ

∗
1)ψ1 − ψ∗

1(i∂tψ1)] dx

= i

∫

Rd

[(
1

2
|∇ψ1|2 + (V (x) + E1)|ψ1|2 − iΩψ1L̂zψ

∗
1 + βnρ|ψ1|2
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+βs (ρ1 + ρ0 − ρ−1) |ψ1|2 + βsψ1 (ψ∗
0)

2 ψ−1 +Bψ1ψ
∗
0

)

−
(

1

2
|∇ψ1|2 + (V (x) + E1)|ψ1|2 + iΩψ∗

1L̂zψ1 + βnρ|ψ1|2

+βs (ρ1 + ρ0 − ρ−1) |ψ1|2 + βsψ
∗
1ψ

2
0ψ

∗
−1 +Bψ∗

1ψ0

)]
dx

= iB

∫

Rd
(ψ∗

0ψ1 − ψ∗
1ψ0) dx + iβs

∫

Rd

(
ψ1 (ψ∗

0)
2 ψ−1 − ψ∗

1ψ
2
0ψ

∗
−1

)
dx. (2.24)

Thus (2.7) is a combination of (2.24), (2.3) and (2.19); we can get (2.8) and (2.9) in a
similar manner. Differentiating (2.3) with respect to t for l = 0 and k = 1, integrating by
parts and noticing (1.1)-(1.3), we have

P ′
0,1(t) = i

∫

Rd
(ψ∗

0∂tψ1 + ψ1∂tψ
∗
0 − ψ0∂tψ

∗
1 − ψ∗

1∂tψ0) dx

=

∫

Rd

[
ψ∗

0

(
−1

2
∇2 + V (x) + E1 − ΩLz + βn ρ+ βs(ρ1 + ρ0 − ρ−1)

)
ψ1

−ψ1

(
−1

2
∇2 + V (x) +E0 − ΩL∗

z + βn ρ+ βs(ρ1 + ρ−1)

)
ψ∗

0

+ψ0

(
−1

2
∇2 + V (x) +E1 − ΩL∗

z + βn ρ+ βs(ρ1 + ρ0 − ρ−1)

)
ψ∗

1

−ψ∗
1

(
−1

2
∇2 + V (x) + E0 − ΩLz + βn ρ+ βs(ρ1 + ρ−1)

)
ψ0

+βs|ψ0|2ψ∗
−1ψ0 +B|ψ0|2 − 2βs|ψ1|2ψ∗

−1ψ0 −Bψ1

(
ψ∗

1 + ψ∗
−1

)

+βs|ψ0|2ψ−1ψ
∗
0 +B|ψ0|2 − 2βs|ψ1|2ψ−1ψ

∗
0 −Bψ∗

1 (ψ1 + ψ−1)

]
dx

=

∫

Rd

[
2B

(
|ψ0|2 − |ψ1|2

)
+ (E1 − E0) (ψ∗

0ψ1 + ψ0ψ
∗
1) −B

(
ψ∗
−1ψ1 + ψ−1ψ

∗
1

)

+βs (ρ0 − 2ρ−1) (ψ0ψ
∗
1 + ψ∗

0ψ1) + βs (ρ0 − 2ρ1)
(
ψ−1ψ

∗
0 + ψ∗

−1ψ0
)]
dx. (2.25)

Thus (2.10) is a combination of (2.25), (2.3), (2.4) and (2.20); we can get (2.11) and (2.12)
in a similar manner. Differentiating (2.4) with respect to t for l = 0 and k = 1, integrating
by parts and noticing (1.1)-(1.3), we have

Q′
0,1(t) =

∫

Rd
(ψ∗

0∂tψ1 + ψ1∂tψ
∗
0 + ψ0∂tψ

∗
1 + ψ∗

1∂tψ0) dx

= i

∫

Rd

[
−ψ∗

0

(
−1

2
∇2 + V (x) + E1 − ΩLz + βn ρ+ βs(ρ1 + ρ0 − ρ−1)

)
ψ1

+ψ1

(
−1

2
∇2 + V (x) + E0 − ΩL∗

z + βn ρ+ βs(ρ1 + ρ−1)

)
ψ∗

0

+ψ0

(
−1

2
∇2 + V (x) + E1 − ΩL∗

z + βn ρ+ βs(ρ1 + ρ0 − ρ−1)

)
ψ∗

1

−ψ∗
1

(
−1

2
∇2 + V (x) + E0 − ΩLz + βn ρ+ βs(ρ1 + ρ−1)

)
ψ0

−βs|ψ0|2ψ∗
−1ψ0 −B|ψ0|2 + 2βs|ψ1|2ψ∗

−1ψ0 +Bψ1
(
ψ∗

1 + ψ∗
−1

)

+βs|ψ0|2ψ−1ψ
∗
0 +B|ψ0|2 − 2βs|ψ1|2ψ−1ψ

∗
0 −Bψ∗

1 (ψ1 + ψ−1)

]
dx
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= i

∫

Rd

[
(E1 − E0) (ψ0ψ

∗
1 − ψ∗

0ψ1) +B
(
ψ∗
−1ψ1 − ψ−1ψ

∗
1

)

+2βs|ψ1|2
(
ψ∗
−1ψ0 − ψ−1ψ

∗
0

)
+ 2βsρ−1 (ψ∗

0ψ1 − ψ0ψ
∗
1)

−βsρ0

(
ψ∗

0ψ1 − ψ0ψ
∗
1 − ψ∗

0ψ−1 + ψ0ψ
∗
−1

)]
dx. (2.26)

Thus (2.13) is a combination of (2.26), (2.3), (2.4) and (2.22), and we can get (2.14) and
(2.15) in a similar manner. 2

Lemma 2.2 Suppose that Ψ(x, t) is the solution of the CGPEs (1.1)-(1.4) and q0 =
(E1 + E−1 − 2E0)/2 = 0; then we have

MΨ(t) = M
(0)
Ψ +

B

µ1

[
P (0) sin(µ1t) + C1(1 − cos(µ1t))

]
, (2.27)

P (t) = P (0) cos(µ1t) + C1 sin(µ1t), t ≥ 0, (2.28)

Q(t) = Q(0) − p0

µ1

[
P (0) sin(µ1t) + C1(1 − cos(µ1t))

]
, (2.29)

where

µ1 =
√

2B2 + p2
0, C1 =

p0Q
(0) − 2BM

(0)
Ψ

µ1
.

The above analytical solution immediately implies that: (i) the total magnetization MΨ(t)
is conserved if B = 0; otherwise, it is a periodic function with period T = 2π√

2B2+p2
0

=

4π√
8B2+(E1−E−1)2

if B 6= 0; (ii) P (t) and Q(t) are conserved if B = 0 and p0 = (E1 −
E−1)/2 = 0; otherwise, they are periodic functions with the period T if either B 6= 0 or
p0 = (E1 − E−1)/2 6= 0.

Proof: Subtracting (2.9) from (2.7) and noticing (1.11) and (2.5), we obtain

M ′
Ψ(t) −B P (t) = 0, t ≥ 0. (2.30)

Summing (2.10) and (2.11), noticing (1.11), (2.6) and (2.5), we have

P ′(t) + 2BMΨ(t) − p0Q(t) = 0, t ≥ 0. (2.31)

Similarly, summing (2.13) and (2.14), noticing (2.5) and (2.6), we get

Q′(t) + p0 P (t) = 0, t ≥ 0. (2.32)

Solving the above ODEs (2.30), (2.31) and (2.32) with the initial conditions (2.16), (2.17)
and (2.18) immediately gives the analytical solution (2.27)-(2.29). 2

Lemma 2.3 Suppose that Ψ(x, t) is the solution of the CGPEs (1.1)-(1.4) and βs = 0,
then there are

(i) If B = 0, we have

N1(t) ≡ N
(0)
1 , N0(t) ≡ N

(0)
0 , N−1(t) ≡ N

(0)
−1 , (2.33)

P0,1(t) = P
(0)
0,1 cos((E1 − E0)t) +Q

(0)
0,1 sin((E1 − E0)t), (2.34)
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Q0,1(t) = Q
(0)
0,1 cos((E1 − E0)t) − P

(0)
0,1 sin((E1 − E0)t), (2.35)

P−1,0(t) = P
(0)
−1,0 cos((E−1 − E0)t) −Q

(0)
−1,0 sin((E−1 − E0)t), (2.36)

Q−1,0(t) = Q
(0)
−1,0 cos((E−1 − E0)t) + P

(0)
−1,0 sin((E−1 −E0)t), (2.37)

P−1,1(t) = P
(0)
−1,1 cos(2p0t) +Q

(0)
−1,1 sin(2p0t), (2.38)

Q−1,1(t) = Q
(0)
−1,1 cos(2p0t) − P

(0)
−1,1 sin(2p0t), t ≥ 0. (2.39)

The analytical solutions suggest that: (a) the mass (or density) of each component Nj(t)
(j = −1, 0, 1) is conserved; (b) for −1 ≤ l < k ≤ 1, the quantities Pl,k(t) and Ql,k(t) are
conserved if El = Ek; otherwise, they are periodic functions with period T = 2π/|El −Ek|
if El 6= Ek.

(ii) If E1 = E0 = E−1 (i.e., p0 = q0 = 0), we have

N1(t) = C1 + C2 cos(λ1t) +
P (0)

2
√

2
sin(λ1t) +

C3

4
√

2
sin(λ2t) +

C5

4
√

2
(1 − cos(λ2t)), (2.40)

N0(t) = 1 − 2C1 −
C3

2
√

2
sin(λ2t) −

C5

2
√

2
(1 − cos(λ2t)), (2.41)

N−1(t) = C1 − C2 cos(λ1t) −
P (0)

2
√

2
sin(λ1t) +

C3

4
√

2
sin(λ2t) +

C5

4
√

2
(1 − cos(λ2t)), (2.42)

P0,1(t) =
C3

2
cos(λ2t) +

C5

2
cos(λ2t) −

√
2C2 sin(λ1t) +

P (0)

2
cos(λ1t), (2.43)

P−1,0(t) = −C3

2
cos(λ2t) −

C5

2
cos(λ2t) −

√
2C2 sin(λ1t) +

P (0)

2
cos(λ1t), (2.44)

P−1,1(t) = P
(0)
−1,1 cos(λ1t) −

√
2C4 sin(λ1t), (2.45)

Q0,1(t) =
Q(0)

2
+ C4 cos(λ1t) +

√
2P

(0)
−1,1

2
sin(λ1t), (2.46)

Q−1,0(t) =
Q(0)

2
− C4 cos(λ1t) −

√
2P

(0)
−1,1

2
sin(λ1t), (2.47)

Q−1,1(t) = Q
(0)
−1,1 +

1

2
√

2
[C3 sin(λ2t) +C5(1 − cos(λ2t))] , (2.48)

Q(t) ≡ Q(0), P (t) = −2
√

2C2 sin(λ1t) + P (0) cos(λ1t), t ≥ 0 (2.49)

with

λ1 =
√

2B, λ2 = 2
√

2B, C1,2 =
1

2

(
N

(0)
1 ±N

(0)
−1

)
, C3 =

1

2

(
P

(0)
0,1 − P

(0)
−1,0

)
,

C4 =
1

2

(
Q

(0)
0,1 −Q

(0)
−1,0

)
, C5 =

1√
2

[
2 − 3

(
N

(0)
1 +N

(0)
−1

)
−Q

(0)
−1,1

]
.

These analytical solutions imply that: (a) Q(t) is conserved; (b) if B = 0, all the other
quantities are also conserved; (c) if B 6= 0, they are periodic functions. The period of N1(t),
N−1(t), P0,1(t), P−1,0, P−1,1(t), Q0,1(t), Q−1,0(t), MΨ(t) and P (t) is T =

√
2π/|B|, while

N0(t) and Q−1,1(t) have the same period T = π/(
√

2|B|).

Proof: If βs = 0, noticing (2.19)-(2.23), the ODE system (2.7)-(2.15) collapses to

N ′
1(t) −BP0,1(t) = 0, (2.50)
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N ′
0(t) +B[P0,1(t) − P−1,0(t)] = 0, (2.51)

N ′
−1(t) +BP−1,0(t) = 0, (2.52)

P ′
0,1(t) − 2B [N0(t) −N1(t)] +BQ−1,1(t) − (E1 − E0)Q0,1(t) = 0, (2.53)

P ′
−1,0(t) + 2B [N0(t) −N−1(t)] −BQ−1,1(t) + (E−1 − E0)Q−1,0(t) = 0, (2.54)

P ′
−1,1(t) −B [Q−1,0(t) −Q0,1(t)] − (E1 − E−1)Q−1,1(t) = 0, (2.55)

Q′
0,1(t) −BP−1,1(t) + (E1 − E0)P0,1(t) = 0, (2.56)

Q′
−1,0(t) +BP−1,1(t) − (E−1 − E0)P−1,0(t) = 0, (2.57)

Q′
−1,1(t) −B[P0,1(t) − P−1,0(t)] + (E1 − E−1)P−1,1(t) = 0, t ≥ 0. (2.58)

(i) If B = 0, the above ODE system reduces to

N ′
1(t) = 0, N ′

0(t) = 0, N ′
−1(t) = 0, t ≥ 0, (2.59)

P ′
0,1(t) − (E1 − E0)Q0,1(t) = 0, Q′

0,1(t) + (E1 − E0)P0,1(t) = 0, (2.60)

P ′
−1,0(t) + (E−1 − E0)Q−1,0(t) = 0, Q′

−1,0(t) − (E−1 − E0)P−1,0(t) = 0, (2.61)

P ′
−1,1(t) − (E1 − E−1)Q−1,1(t) = 0, Q′

−1,1(t) + (E1 − E−1)P−1,1(t) = 0. (2.62)

Thus (2.33) is the solution of the ODEs in (2.59) with initial data (2.16). With the initial
condition (2.17) and (2.18), (2.34) and (2.35) is the solution of the ODEs in (2.60); (2.36)
and (2.37) is the solution of the ODEs in (2.61), and (2.38) and (2.39) is the solution of
the ODEs in (2.62).

(ii) If E1 = E0 = E−1, the ODE system (2.50)-(2.58) becomes

N ′
1(t) −BP0,1(t) = 0, (2.63)

N ′
0(t) +B[P0,1(t) − P−1,0(t)] = 0, (2.64)

N ′
−1(t) +BP−1,0(t) = 0, (2.65)

P ′
0,1(t) − 2B [N0(t) −N1(t)] +BQ−1,1(t) = 0, (2.66)

P ′
−1,0(t) + 2B [N0(t) −N−1(t)] −BQ−1,1(t) = 0, (2.67)

P ′
−1,1(t) −B [Q−1,0(t) −Q0,1(t)] = 0, (2.68)

Q′
0,1(t) −BP−1,1(t) = 0, (2.69)

Q′
−1,0(t) +BP−1,1(t) = 0, (2.70)

Q′
−1,1(t) −B[P0,1(t) − P−1,0(t)] = 0, t ≥ 0. (2.71)

Summing (2.69) and (2.70), we get

Q′(t) = Q′
0,1(t) +Q′

−1,0(t) ≡ 0, t ≥ 0. (2.72)

This immediately implies that Q(t) is conserved, i.e. the first part in (2.49). Subtracting
(2.65) from (2.63), summing (2.66) and (2.67), we obtain

N ′
1(t) −N ′

−1(t) −B [P0,1(t) + P−1,0(t)] = 0, (2.73)

P ′
0,1(t) + P ′

−1,0(t) + 2B [N1(t) −N−1(t)] = 0. (2.74)

Solving the above linear ODE system and noticing the initial conditions (2.16) and (2.17),
we have

N1(t) −N−1(t) = 2C2 cos(λ1t) +
1√
2
P (0) sin(λ1t), (2.75)

P (t) = P0,1(t) + P−1,0(t) = P (0) cos(λ1t) − 2
√

2C2 sin(λ1t). (2.76)
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Summing (2.65) and (2.63), subtracting (2.67) from (2.66), noting (1.9), we have

N ′
1(t) +N ′

−1(t) −B [P0,1(t) − P−1,0(t)] = 0, (2.77)

P ′
0,1(t) − P ′

−1,0(t) + 6B [N1(t) +N−1(t)] + 2BQ−1,1(t) = 4B. (2.78)

Solving the linear ODE system of (2.77), (2.78) and (2.71), noticing the initial conditions
(2.16), (2.17) and (2.18), we get

N1(t) +N−1(t) = 2C1 +
1

2
√

2
[C3 sin(λ2t) +C5(1 − cos(λ2t))] , (2.79)

P0,1(t) − P−1,0(t) = C3 cos(λ2t) + C5 sin(λ2t), (2.80)

Q−1,1(t) = Q
(0)
−1,1 +

1

2
√

2
[C3 sin(λ2t) + C5(1 − cos(λ2t))] . (2.81)

Subtracting (2.70) from (2.69) leads to

Q′
0,1(t) −Q′

−1,0(t) = 2BP−1,1(t). (2.82)

Solving (2.82) and (2.68) with the initial conditions (2.17) and (2.18), we get

Q0,1(t) −Q−1,0(t) = 2C4 cos(λ1t) +
√

2P
(0)
−1,1 sin(λ1t), (2.83)

P−1,1(t) = P
(0)
−1,1 cos(λ1t) −

√
2C4 sin(λ1t). (2.84)

Thus we obtain the solution (2.40)-(2.49) from (2.75), (2.76), (2.79)-(2.81), (2.83), (2.84)
and (1.9) immediately. 2

3 Conservation of the angular momentum expectation

As a measure of vortex flux, we define the total angular momentum expectation

〈Lz〉(t) =
1∑

j=−1

〈Lz〉j(t), t ≥ 0, (3.1)

where

〈Lz〉j(t) =

∫

Rd
ψ∗

jLzψj dx = i

∫

Rd
ψ∗

j (y∂x − x∂y)ψj dx = −i
∫

Rd
ψ∗

j L̂zψj dx, (3.2)

〈L̃z〉j(t) :=
〈Lz〉j(t)
Nj(t)

, t ≥ 0, j = −1, 0, 1. (3.3)

In fact, 〈L̃z〉j(t) is the angular momentum expectation of the jth (j = −1, 0, 1) component.
As shown in Lemma 2.3, when βs = B = 0, the density of each component is conserved;

thus in this case we have 〈L̃z〉j(t) =
〈Lz〉j(t)

N
(0)
j

.

For the dynamics of the angular momentum expectation in rotating spin-1 BEC, we
have the following lemmas:
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Lemma 3.1 Suppose Ψ(x, t) is the solution of the CGPEs (1.1)-(1.4), then we have

d〈Lz〉(t)
dt

= (γ2
y − γ2

x)
1∑

j=−1

∫

Rd
xy|ψj |2 dx, t ≥ 0. (3.4)

This suggests that, for any given initial data Ψ0(x), the total angular momentum expecta-
tion is conserved, i.e.

〈Lz〉(t) = 〈Lz〉(0) =
1∑

j=−1

∫

Rd

(
ψ0

j (x)
)∗
Lzψ

0
j (x) dx, t ≥ 0, (3.5)

if the external trapping potential V (x) is radially symmetric in 2D, and resp. cylindrically
symmetric in 3D, i.e. γx = γy in (1.6).

Proof: Differentiating (3.2) with respect to t for j = 1, noticing (1.5) and (1.1), integrating
by parts, we obtain

〈Lz〉1(t)
dt

=

∫

Rd
[∂tψ

∗
1Lzψ1 + ψ∗

1Lz (∂tψ1)] dx

=

∫

Rd

[
(−i∂tψ

∗
1)L̂zψ1 + (i∂tψ1)L̂zψ

∗
1

]
dx

=

∫

Rd

[
− 1

2

(
L̂zψ1∇2ψ∗

1 + L̂zψ
∗
1∇2ψ1

)
− iΩ(L̂zψ1L̂zψ

∗
1 − L̂zψ

∗
1L̂zψ1)

+ (V (x) + E1 + βnρ+ βs(ρ1 + ρ0 − ρ−1))
(
ψ∗

1L̂zψ1 + ψ1L̂zψ
∗
1

)

+βs

(
ψ−1 (ψ∗

0)
2 L̂zψ1 + ψ∗

−1ψ
2
0L̂zψ

∗
1

)
+B

(
ψ∗

0L̂zψ1 + ψ0L̂zψ
∗
1

) ]
dx

=

∫

Rd

[
(γ2

y − γ2
x)xy|ψ1|2 + (βn + βs)ρ0L̂z|ψ1|2 + (βn − βs)ρ−1L̂z|ψ1|2

+βs

(
ψ−1 (ψ∗

0)
2 L̂zψ1 + ψ∗

−1ψ
2
0L̂zψ

∗
1

)
+B

(
ψ∗

0L̂zψ1 + ψ0L̂zψ
∗
1

) ]
dx

= (γ2
y − γ2

x)

∫

Rd
xy|ψ1(x, t)|2 dx +G1(t), t ≥ 0, (3.6)

where

G1(t) =

∫

Rd
[(βn + βs)ρ0 + (βn − βs)ρ−1] L̂z|ψ1|2 dx

+2Re

∫

Rd

[
βsψ−1(ψ

∗
0)

2L̂zψ1 +Bψ∗
0L̂zψ1

]
dx, t ≥ 0. (3.7)

Similarly, we have

〈Lz〉0(t)
dt

= (γ2
y − γ2

x)

∫

Rd
xy|ψ0(x, t)|2 dx +G0(t), (3.8)

〈Lz〉−1(t)

dt
= (γ2

y − γ2
x)

∫

Rd
xy|ψ−1(x, t)|2 dx +G−1(t), t ≥ 0. (3.9)
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with

G0(t) = (βn + βs)

∫

Rd

(ρ1 + ρ−1) L̂z|ψ0|2 dx

+2Re

∫

Rd

[
βsψ

∗
−1ψ

∗
1L̂zψ

2
0 +B

(
ψ∗

1 + ψ∗
−1

)
L̂zψ0

]
dx, (3.10)

G−1(t) =

∫

Rd
[(βn + βs)ρ0 + (βn − βs)ρ1] L̂z|ψ−1|2 dx

+2Re

∫

Rd

[
βsψ1(ψ

∗
0)

2L̂zψ−1 +Bψ∗
0L̂zψ−1

]
dx, t ≥ 0. (3.11)

Summing (3.6), (3.8) and (3.9), noticing (3.7), (3.10) and (3.11), we get (3.4) immediately.
2

Lemma 3.2 Suppose that the external trapping potential V (x) is radially symmetric in
2D, and resp. cylindrically symmetric in 3D, i.e., γx = γy in (1.6). The initial data ψ0

j (x)
(j = −1, 0, 1) is chosen as

ψ0
j (x) = fj(r)e

imjθ with mj ∈ Z and fj(0) = 0 when mj 6= 0, (3.12)

in 2D, and resp. in 3D

ψ0
j (x) = fj(r, z)e

imjθ with mj ∈ Z and fj(0, z) = 0 when mj 6= 0. (3.13)

If βs = B = 0, for any βn and mj (j = −1, 0, 1), the angular momentum expectation

〈Lz〉j(t) and 〈L̃z〉j(t) are conserved, i.e.

〈Lz〉j(t) ≡ 〈Lz〉j(0) =

∫

Rd

(
ψ0

j (x)
)∗
Lzψ

0
j (x) dx, t ≥ 0, (3.14)

〈L̃z〉j(t) = 〈L̃z〉j(0) =
1

N
(0)
j

∫

Rd

(
ψ0

j (x)
)∗
Lzψ

0
j (x) dx, t ≥ 0, j = −1, 0, 1. (3.15)

If m−1 = m0 = m1 := m, for any βn, βs and B, 〈L̃z〉j(t) is conserved, i.e.

〈L̃z〉j(t) ≡ m, t ≥ 0, j = −1, 0, 1. (3.16)

Proof: If the initial data Ψ0(x) satisfies (3.12) in 2D, and resp. (3.13) in 3D, when
βs = B = 0 or m1 = m0 = m−1 := m, due to the symmetry, the solution Ψ(x, t) of the
CGPEs (1.1)-(1.4) satisfies

ψj(x, t) = gj(r, t)e
imjθ, with gj(r, 0) = fj(r), j = −1, 0, 1, (3.17)

in 2D, and resp. in 3D

ψj(x, t) = gj(r, z, t)e
imjθ, with gj(r, z, 0) = fj(r, z), j = −1, 0, 1. (3.18)

When βs = B = 0, plugging (3.17) for 2D, or resp. (3.18) for 3D, into (3.7), (3.10) and
(3.11), we obtain

G1(t) ≡ 0, G0(t) ≡ 0, G−1(t) ≡ 0, t ≥ 0. (3.19)
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Substituting (3.19) into (3.6), (3.8) and (3.9), noticing γx = γy, we get

〈Lz〉1(t)
dt

≡ 0,
〈Lz〉0(t)
dt

≡ 0,
〈Lz〉−1(t)

dt
≡ 0, t ≥ 0, (3.20)

which implies the conservation of (3.14). The conservation in (3.15) is a combination of
(3.14) and (2.2). When m−1 = m0 = m1 := m, plugging (3.17) for 2D, or resp. (3.18) for
3D, into (3.3), noticing (3.2) and (2.1), for j = −1, 0, 1, we obtain

〈L̃z〉j(t) =
〈Lz〉j(t)
Nj(t)

=
−i
∫
Rd ψ∗

j L̂zψj dx∫
Rd |ψj(x, t)|2 dx

=
−i
∫
Rd g∗j e

−imθ (im) gj e
imθ dx

∫
Rd |gj |2 dx

≡ m, t ≥ 0. (3.21)

This immediately implies (3.16). 2

4 Dynamics of condensate widths

Another important quantity characterizing the dynamics of the spin-1 BEC is the conden-
sate width defined as

σα(t) =
√
δα(t) =

√
δα,1(t) + δα,0(t) + δα,−1(t), α = x, y, or z, (4.1)

where

δα,j(t) = 〈α2〉j(t) =

∫

Rd
α2|ψj(x, t)|2dx, t ≥ 0, j = −1, 0, 1. (4.2)

For the dynamics of condensate widths, we have the following lemmas.

Lemma 4.1 Suppose Ψ(x, t) is the solution of the CGPEs (1.1)-(1.4), then we have

d2δα(t)

dt2
=

∫

Rd

[
1∑

j=−1

2

(
(∂yα− ∂xα)

(
2iΩψ∗

j (x∂y + y∂x)ψj + Ω2(x2 − y2)|ψj |2
)

+|∂αψj |2 − α|ψj |2∂α(V (x))

)
+ βnρ

2
0 + (βn + βs)(ρ

2
1 + ρ2

−1 + 2ρ0(ρ1 + ρ−1))

+2(βn − βs)ρ1ρ−1 + 2βsRe
(
ψ∗
−1ψ

2
0ψ

∗
1

) ]
dx, t ≥ 0, (4.3)

δα(0) = δ(0)α =

∫

Rd
α2
(
|ψ0

1 |2 + |ψ0
0 |2 + |ψ0

−1|2
)
dx, α = x, y, z, (4.4)

δ′α(0) = δ(1)α = 2
1∑

j=−1

∫

Rd
α
[
−Ω|ψ0

j |2(x∂yα− y∂xα) + Im
(
(ψ0

j )
∗∂αψ

0
j

)]
dx. (4.5)

Proof: Differentiating (4.2) with respect to t for j = 1, noticing (1.1)-(1.3) and integrating
by parts, we get

dδα,1(t)

dt
=

d

dt

∫

Rd
α2|ψ1(x, t)|2dx =

∫

Rd
α2 (ψ1∂tψ

∗
1 + ψ∗

1∂tψ1) dx
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=

∫

Rd

[
i

2
α2
(
ψ∗

1∇2ψ1 − ψ1∇2ψ∗
1

)
+ iβsα

2
(
ψ−1(ψ

∗
0)

2ψ1 − ψ∗
−1ψ

2
0ψ

∗
1

)

+Ωα2 (x∂y − y∂x) |ψ1|2 + iBα2 (ψ1ψ
∗
0 − ψ∗

1ψ0)

]
dx

=

∫

Rd

[
iα (ψ1∂αψ

∗
1 − ψ∗

1∂αψ1) + iβsα
2
(
ψ−1(ψ

∗
0)

2ψ1 − ψ∗
−1ψ

2
0ψ

∗
1

)

−2Ωα|ψ1|2 (x∂y − y∂x)α+ iBα2 (ψ1ψ
∗
0 − ψ∗

1ψ0)

]
dx. (4.6)

Differentiating the above equation with respect to t, we obtain

d2δα,1(t)

dt2
=

∫

Rd

[
2iα (∂tψ1∂αψ

∗
1 − ∂tψ

∗
1∂αψ1) − 2Ωα (ψ1∂tψ

∗
1 + ψ∗

1∂tψ1) L̂zα

+i (ψ∗
1∂tψ1 − ψ1∂tψ

∗
1) + iBα2 (ψ∗

0∂tψ1 + ψ1∂tψ
∗
0 − ψ0∂tψ

∗
1 − ψ∗

1∂tψ0)

+iβsα
2
(
ψ−1(ψ

∗
0)2∂tψ1 + ψ1(ψ

∗
0)

2∂tψ−1 + 2ψ−1ψ
∗
0ψ1∂tψ

∗
0 − ψ∗

−1ψ
2
0∂tψ

∗
1

−ψ∗
1ψ

2
0∂tψ

∗
−1 − 2ψ∗

−1ψ0ψ
∗
1∂tψ0

)]
dx

:= I + II + III + IV + V. (4.7)

Plugging (1.1)-(1.3) into each parts of (4.7) and applying the integration by parts, we
obtain

I :=

∫

Rd
2α [(i∂tψ1) ∂αψ

∗
1 + (−i∂tψ

∗
1) ∂αψ1] dx

=

∫

Rd

[
− α

(
∂αψ

∗
1∇2ψ1 + ∂αψ1∇2ψ∗

1

)
− 2Ωα (∂αψ

∗
1Lzψ1 + ∂αψ1L

∗
zψ

∗
1)

+2α (V (x) + E1 + βnρ+ βs(ρ1 + ρ0 − ρ−1)) ∂α|ψ1|2

+4αRe
(
βsψ

∗
−1ψ

2
0∂αψ

∗
1 +Bψ0∂αψ

∗
1

) ]
dx

= 2

∫

Rd

[
− 1

2
|∇ψ1|2 + |∂αψ1|2 + Ωψ∗

1Lzψ1 + iΩ(∂yα− ∂xα)ψ∗
1(x∂y + y∂x)ψ1

−
(
V (x) + E1 + (βn + βs)ψ0|2| + (βn − βs)|ψ−1|2

)
|ψ1|2

−α|ψ1|2∂α

(
V (x) + (βn + βs)|ψ0|2 + (βn − βs)|ψ−1|2

)

+2αRe
(
βsψ

∗
−1ψ

2
0∂αψ

∗
1 +Bψ0∂αψ

∗
1

) ]
dx. (4.8)

II := −2Ω

∫

Rd
αLzα [ψ∗

1(i∂tψ1) − ψ1(−i∂tψ
∗
1)] dx

= −2Ω

∫

Rd
αLzα

[
− 1

2

(
ψ∗

1∇2ψ1 − ψ1∇2ψ∗
1

)
− Ω (ψ∗

1Lzψ1 − ψ1L
∗
zψ

∗
1)

+βs

(
ψ∗
−1ψ

2
0ψ

∗
1 − ψ−1(ψ

∗
0)

2ψ1

)
+B (ψ∗

1ψ0 − ψ1ψ
∗
0)

]
dx

= 2Ω

∫

Rd
(∂yα− ∂xα)

[
iψ∗

1(x∂y + y∂x)ψ1 + Ω(x2 − y2)|ψ1|2
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+2x y Im
(
βsψ

∗
−1ψ

2
0ψ

∗
1 +Bψ∗

1ψ0

) ]
dx. (4.9)

III :=

∫

Rd
[ψ∗

1(i∂tψ1) + ψ1(−i∂tψ
∗
1)] dx

=

∫

Rd

[
− 1

2

(
ψ∗

1∇2ψ1 + ψ1∇2ψ∗
1

)
+ 2(V (x) + E1)|ψ1|2 − Ω(ψ∗

1Lzψ1 + ψ1L
∗
zψ

∗
1)

+2(βnρ+ βs(ρ1 + ρ0 − ρ−1))|ψ1|2 + 2Re
(
βsψ

∗
−1ψ

2
0ψ

∗
1 +Bψ∗

1ψ0

) ]
dx

= 2

∫

Rd

[
1

2
|∇ψ1|2 + (V (x) + E1)|ψ1|2 − Ωψ∗

1Lzψ1

+(βnρ+ βs(ρ1 + ρ0 − ρ−1))|ψ1|2 + Re
(
βsψ

∗
−1ψ

2
0ψ

∗
1 +Bψ∗

1ψ0

) ]
dx. (4.10)

IV := iB

∫

Rd
α2 (ψ∗

0∂tψ1 + ψ1∂tψ
∗
0 − ψ0∂tψ

∗
1 − ψ∗

1∂tψ0) dx. (4.11)

V := i βs

∫

Rd
α2
(
ψ−1(ψ

∗
0)2∂tψ1 + ψ1(ψ

∗
0)

2∂tψ−1 + 2ψ−1ψ
∗
0ψ1∂tψ

∗
0

−ψ∗
−1ψ

2
0∂tψ

∗
1 − ψ∗

1ψ
2
0∂tψ

∗
−1 − 2ψ∗

−1ψ0ψ
∗
1∂tψ0

)
dx. (4.12)

Substituting (4.8)-(4.12) into (4.7), we obtain

d2δα,1(t)

dt2
=

∫

Rd

[
2(∂yα− ∂xα)

(
Ω2|ψ1|2(x2 − y2) + 2iΩψ∗

1(x∂y + y∂x)ψ1

)

+2|∂αψ1|2 + (βn + βs)|ψ1|4 − 2α|ψ1|2∂α (V (x))

−2α|ψ1|2
(
(βn + βs)∂α|ψ0|2 + (βn − βs)∂α|ψ−1|2

) ]
dx

+2Re

∫

Rd

[
2βsαψ

∗
−1ψ

2
0∂αψ

∗
1 + βsψ

∗
−1ψ

2
0ψ

∗
1 + 2Bαψ0∂αψ

∗
1 +Bψ∗

1ψ0

]
dx

+2 Im

∫

Rd

[
2Ωxy(∂yα− ∂xα)

(
βsψ

∗
−1ψ

2
0ψ

∗
1 +Bψ∗

1ψ0

)

+βsα
2
(
ψ∗
−1ψ

2
0∂tψ

∗
1 + ψ∗

1ψ
2
0∂tψ

∗
−1 + 2ψ∗

−1ψ0ψ
∗
1∂tψ0

)

+Bα2 (ψ0∂tψ
∗
1 + ψ∗

1∂tψ0)

]
dx. (4.13)

Similarly, we get

d2δα,0(t)

dt2
=

∫

Rd

[
2(∂yα− ∂xα)

(
Ω2|ψ0|2(x2 − y2) + 2iΩψ∗

0(x∂y + y∂x)ψ0

)

+2|∂αψ0|2 + βn|ψ0|4 − 2α|ψ0|2∂α (V (x))

−2α(βn + βs)|ψ0|2
(
∂α|ψ1|2 + ∂α|ψ−1|2

) ]
dx

+2Re

∫

Rd

[
2βs

(
2αψ−1ψ

∗
0ψ1∂αψ

∗
0 + ψ−1(ψ

∗
0)

2ψ1

)

+B (ψ1 + ψ−1) (ψ∗
0 + 2α∂αψ

∗
0)

]
dx

+2 Im

∫

Rd

[
2Ωxy(∂yα− ∂xα)

(
2βsψ−1(ψ

∗
0)

2ψ1 +Bψ∗
0 (ψ1 + ψ−1)

)
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+2βsα
2
(
(ψ∗

0)
2ψ1∂tψ−1 + ψ−1(ψ

∗
0)2∂tψ1 + 2ψ−1ψ

∗
0ψ1∂tψ

∗
0

)

+Bα2 ((ψ1 + ψ−1) ∂tψ
∗
0 + ψ∗

0 (∂tψ1 + ∂tψ−1))

]
dx. (4.14)

d2δα,−1(t)

dt2
=

∫

Rd

[
2(∂yα− ∂xα)

(
Ω2|ψ−1|2(x2 − y2) + 2iΩψ∗

−1(x∂y + y∂x)ψ−1

)

+2|∂αψ−1|2 + (βn + βs)|ψ−1|4 − 2α|ψ−1|2∂α (V (x))

−2α|ψ−1|2
(
(βn + βs)∂α|ψ0|2 + (βn − βs)∂α|ψ1|2

) ]
dx

+2Re

∫

Rd

(
2βsαψ

∗
1ψ

2
0∂αψ

∗
−1 + βsψ

∗
1ψ

2
0ψ

∗
−1 + 2Bαψ0∂αψ

∗
−1 +Bψ∗

−1ψ0

)
dx

+2 Im

∫

Rd

[
2Ωxy(∂yα− ∂xα)

(
βsψ

∗
1ψ

2
0ψ

∗
−1 +Bψ∗

−1ψ0

)

+βsα
2
(
ψ∗

1ψ
2
0∂tψ

∗
−1 + ψ∗

−1ψ
2
0∂tψ

∗
1 + 2ψ∗

−1ψ0ψ
∗
1∂tψ0

)

+Bα2 (ψ0∂tψ
∗
−1 + ψ∗

−1∂tψ0

)]
dx. (4.15)

Summing (4.13), (4.14) and (4.15), we obtain (4.3) immediately. In addition, the initial
conditions (4.4) and (4.5) can be obtained from (4.1), (4.2) and (4.6) by setting t = 0 and
noticing (1.4). 2

Lemma 4.2 Suppose Ψ(x, t) is the solution of the CGPEs (1.1)-(1.4) with B = 0 and
E1 = E0 = E−1 := E, then we have

(i) In 1D without nonlinear term, i.e. d = 1, βn = βs = 0 and Ω = 0 in (1.1)-(1.3),
for any initial data Ψ0 = Ψ0(x) in (1.4), we have

δx(t) =
EΨ(0) − E

γ2
x

[1 − cos(2γxt)] + δ(0)x cos(2γxt) +
δ
(1)
x

2γx
sin(2γxt), t ≥ 0. (4.16)

(ii) In 2D with a radially symmetric trap, i.e. d = 2 and γx = γy := γr in (1.1)-(1.3),
for any initial data Ψ0 = Ψ0(x, y) in (1.4), we have, for time t ≥ 0,

δr(t) =
EΨ(0) + Ω〈Lz〉(0) − E

γ2
r

[1 − cos(2γrt)] + δ(0)r cos(2γrt) +
δ
(1)
r

2γr
sin(2γrt), (4.17)

where δr(t) = δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0) and δ

(1)
r := δ′x(0) + δ′y(0).

Proof: (i) When βn = βs = 0, B = 0, Ω = 0 and E1 = E0 = E−1 := E in (1.1)-(1.3),
from (4.3) with d = 1, noticing (1.10), we have

d2δx(t)

dt2
= −2γ2

xδx(t) +

∫

Rd

1∑

j=−1

2|∂xψj |2

= −4γ2
xδx(t) + 4

∫

Rd

1∑

j=−1

(
1

2
|∂xψj|2 + (V (x) +E)|ψj |2

)
− 4E

= −4γ2
xδx(t) + 4EΨ(0) − 4E, t ≥ 0. (4.18)
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Thus, (4.16) is the unique solution of the second-order ODE (4.18) with the initial data
(4.4) and (4.5).

(ii) Define

K(Ψ) =
βn

2
ρ2
0 +

βn + βs

2
(ρ2

1 + ρ2
−1 + 2ρ0(ρ1 + ρ−1)) + (βn − βs)ρ1ρ−1 + βsRe

(
ψ∗
−1ψ

2
0ψ

∗
1

)
.

When B = 0, γx = γy := γr and E1 = E0 = E−1 := E in (1.1)-(1.3), from (4.3) with
d = 2, we have

d2δx(t)

dt2
=

∫

R2

[
1∑

j=−1

2

(
|∂xψj |2 − 2iΩψ∗

j (x∂y + y∂x)ψj − Ω2(x2 − y2)|ψj |2

−γ2
xx

2|ψj |2
)

+ 2K(Ψ)

]
dx, (4.19)

d2δy(t)

dt2
=

∫

R2

[
1∑

j=−1

2

(
|∂yψj |2 + 2iΩψ∗

j (x∂y + y∂x)ψj + Ω2(x2 − y2)|ψj |2

−γ2
yy

2|ψj |2
)

+ 2K(Ψ)

]
dx. (4.20)

Summing (4.19) and (4.20), we obtain

d2δr(t)

dt2
= −2γ2

r δr(t) +

∫

R2

( 1∑

j=−1

2|∇ψj |2 + 4K(Ψ)

)
dx

= −4γ2
r δr(t) − 4E + 4Ω〈Lz〉(t)

+4

∫

R2

1∑

j=−1

[
1

2
|∇ψj |2 + (V (x) + E)|ψj |2 − Ω Re(ψ∗

jLzψj) +K(Ψ)

]
dx

= −4γ2
r δr(t) + 4EΨ(0) − 4E + 4Ω〈Lz〉(0), t ≥ 0. (4.21)

Thus, (4.16) is the unique solution of the second-order ODE (4.21) with the initial data
(4.4) and (4.5). 2

5 Dynamics of a stationary state with its center shifted

In this section, we assume that B = 0 in (1.1)-(1.3). Let Φ := Φ(x) = (φ1(x), φ0(x), φ−1(x))T

be a stationary state of the CGPEs (1.1)-(1.3), i.e.

µ1φ1(x) =

(
−1

2
∇2 + V (x) + E1 − ΩLz + βn ρ+ βs(ρ1 + ρ0 − ρ−1)

)
φ1 + βsφ

∗
−1φ

2
0,

µ0φ0(x) =

(
−1

2
∇2 + V (x) + E0 − ΩLz + βn ρ+ βs(ρ1 + ρ−1)

)
φ0 + 2βsφ−1φ

∗
0φ1,

µ−1φ−1(x) =

(
−1

2
∇2 + V (x) + E−1 − ΩLz + βn ρ+ βs(ρ−1 + ρ0 − ρ1)

)
φ−1 + βsφ

∗
1φ

2
0,

where µ1, µ0 and µ−1 are chemical potentials and they satisfy

µ1 + µ−1 = 2µ0. (5.1)
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If the initial data Ψ0(x) in (1.4) is chosen as a stationary state with its center-of-mass
shifted from the trap center, one can construct an exact solution of the CGPEs (1.1)-(1.3)
with a harmonic oscillator potential (1.6). This kind of analytical construction can be
used, in particular, in the benchmark and validation of numerical algorithms for CGPEs.
In [17, 11, 3, 36], similar kind of solutions have been constructed for the Gross-Pitaevskii
equation of single-component BEC and CGPEs of two-component BEC. Here we extend
this study to the spin-1 BEC.

Lemma 5.1 If the initial data Ψ0(x) in (1.4) is chosen as

Ψ0(x) = Φ(x− x0)ei(a
0·x+b0), x ∈ R

d, (5.2)

where x0 = (x0
1, . . . , x

0
d)

T ∈ Rd is a given point, a0 = (a0
1, . . . , a

0
d)

T ∈ Rd is a vector and
b0 ∈ R is a constant, then the exact solution of (1.1)-(1.3) with the initial data (5.2)
satisfies:

ψj(x, t) = φj(x − x(t)) e−iµjt ei(a(t)·x+b(t)), x ∈ R
d, t ≥ 0, j = −1, 0, 1, (5.3)

where for any time t ≥ 0, x(t) satisfies the following second-order ODE system:

x′′(t) − 2Ωy′(t) + (γ2
x − Ω2)x(t) = 0, (5.4)

y′′(t) + 2Ωx′(t) + (γ2
y − Ω2)y(t) = 0, t ≥ 0, (5.5)

x(0) = x0
1, y(0) = x0

2, x′(0) = Ωx0
2 + a0

1, y′(0) = −Ωx0
1 + a0

2 . (5.6)

Moreover, if in 3D, another ODE needs to be added:

z′′(t) + γ2
zz(t) = 0, z(0) = x0

3, z′(0) = 0. (5.7)

In addition, a(t) = (a1(t), . . . , ad(t))
T and b(t) satisfy

a′(t) = −Ax(t) + Ω J a(t), (5.8)

b′(t) = −3

2
|a(t)|2 − 1

2
x(t)T Ax(t) + Ωx(t)T J a(t), t > 0, (5.9)

with initial data
a(0) = a0, b(0) = b0; (5.10)

where for d = 1,
A = γ2

x, J = 0;

for d = 2,

A =

(
γ2

x 0
0 γ2

y

)
, J =

(
0 1
−1 0

)
;

for d = 3,

A =



γ2

x 0 0
0 γ2

y 0

0 0 γ2
z


 , J =




0 1 0
−1 0 0
0 0 0


 .

Proof: The proof follows the line of the analogous result in [3] for GPE with an angular
momentum rotation term for the single component BEC. 2
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6 Numerical method and results

In this section, we present an efficient and accurate numerical method to discretize the
CGPEs (1.1)-(1.3) for the dynamics of rotating spin-1 BEC and report some numerical
results to validate our analytical results in previous sections.

6.1 Numerical method

In the literature, different spectrally accurate numerical methods were proposed to dis-
cretize GPE or CGPEs for studying the dynamics of BECs (cf. [7, 2, 3, 4] and references
therein). The key ideas of these methods are: (i) using a time-splitting technique to decou-
ple the nonlinearity; (ii) adopting the spectral method to discretize the free Schrödinger
equation without/with the angular rotation term; (iii) constructing the proper spectral
basis functions such that the reduced ODE system is decoupled and thus can be integrated
in time exactly.

Here we will present a spectrally accurate method for the CGPEs (1.1)-(1.3) based on
the above ideas. To do this, we first rewrite (1.1)-(1.3) into the form

i∂tΨ(x, t) = CΨ +DΨ +GΨ, (6.1)

where the matrices

C = diag {H, H, H}, D = diag {d1, d2, d3}, (6.2)

G = G(Ψ) =




0 βsψ
∗
−1 ψ0 +B 0

βsψ−1 ψ
∗
0 +B 0 βsψ

∗
0 ψ1 +B

0 βsψ0 ψ
∗
1 +B 0


 , (6.3)

with

H = −1

2
∇2 − ΩLz, d1 = V (x) + E1 + βnρ+ βs(ρ1 + ρ0 − ρ−1),

d2 = V (x) + E0 + βnρ+ βs(ρ1 + ρ−1), d3 = V (x) + E−1 + βnρ+ βs(ρ−1 + ρ0 − ρ1).

Then the CGPEs (1.1)-(1.3) can be splitted into the following three subproblems:

i∂tΨ(x, t) = CΨ(x, t) =

(
−1

2
∇2 − ΩLz

)
Ψ(x, t), (6.4)

i∂tΨ(x, t) = DΨ(x, t), (6.5)

i∂tΨ(x, t) = GΨ(x, t). (6.6)

For a given time step ∆t > 0, we denote the time sequence tn = n∆t for n = 0, 1, 2, . . .
Let Ψn := Ψn(x) = (ψn

1 (x), ψn
0 (x), ψn

−1(x))T be the approximation of Ψ(x, tn). Then from
time t = tn to t = tn+1, a second-order symplectic time integrator for (6.1) can be given
as follows [32, 4, 8]

Ψ(1) = e−iC∆t/2Ψn, Ψ(2) = e−iD∆t/2Ψ(1), Ψ(3) = e−iG∆tΨ(2),

Ψ(4) = e−iD∆t/2Ψ(3), Ψn+1 = e−iC∆t/2Ψ(4).
(6.7)

The key for an efficient implementation of (6.7) is to solve (6.4)-(6.6) efficiently on the
time interval [tn, tn+1]. Different techniques were proposed in the literature for efficiently
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discretizing the subproblem (6.4) (cf. [3, 7, 37] and references therein). Here we adopt the
technique proposed in [3, 37] for rotating BEC. The nonlinear ODE system (6.5) leaves
|ψj(x, t)| (j = −1, 0, 1) invariant in time t, i.e., |ψj(x, t)| = |ψj(x, tn)| for t ∈ [tn, tn+1].
Thus, the ODEs in (6.5) can be integrated exactly. For the nonlinear ODE system (6.6),
we can not solve it exactly. Here, we use the approach applied in [8], which integrates (6.6)
over the time interval [tn, tn+1] and then approximates the integral by the second-order
Runge-Kutta approximation [8]. The detailed scheme for (6.6) is

Ψn+1 ≈ Ψ(x, tn+1) = exp

(
−i

∫ tn+1

tn
G(Ψ(x, τ)) dτ

)
Ψ(x, tn)

≈ e−i∆t
(
G(Ψn)+G(Ψ̃)

)
/2 Ψn := e−i∆t R(Ψn) Ψn, (6.8)

where

Ψ̃ = Ψn − i∆tG(Ψn)Ψn := (ψ̃1, ψ̃0, ψ̃−1)
T ,

R(Ψn) =
1

2

(
G(Ψn) +G(Ψ̃)

)
:=




0 r12 0
r∗12 0 r23
0 r∗23 0




with

r12 =
βs

2

(
(ψn

−1)
∗ψn

0 + ψ̃∗
−1ψ̃

n
0

)
+B, r23 =

βs

2

(
(ψn

0 )∗ψn
1 + ψ̃∗

0ψ̃
n
1

)
+B.

Since G(Ψ) is a Hermitian matrix, R(Ψn) is also a Hermitian matrix. Following [8], we
can explicitly compute the approximation in (6.8) as

Ψn+1 = e−i∆t R(Ψn) Ψn =
(
P e−i∆t Λ (P ∗)T

)
Ψn, (6.9)

where

Λ =




0 0 0
0 λ 0
0 0 −λ


 , P =

1√
2λ




√
2r23 r12 −r12
0 λ λ

−
√

2r12 r∗23 −r∗23




with
λ =

√
|r12|2 + |r23|2.

For more details, see [8, 4] and references therein.

6.2 Numerical results

In the following, we report some 2D numerical results to verify our analytical results about
the dynamics of spin-1 BEC. The CGPEs (1.1)-(1.3) is solved in the polar coordinate (r, θ)
within a truncated domain ΩR = {x | |x| ≤ R}, where R = 20 is large enough to neglect
the truncation effect. We choose the mesh size ∆r = 0.005 and ∆θ = π/128 and the time
step ∆t = 0.0001.

Example 1. Dynamics of the density of each component, we choose d = 2, Ω = 0.6,
γx = γy = 1.0, βn = 100 in (1.1)-(1.3). The initial data in (1.4) is chosen as

ψ0
1(x) = (x+ iy)φ(x), ψ0

0(x) = 2φ(x), ψ0
−1(x) = (x+ 2iy)φ(x) (6.10)
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with

φ(x) =
C√
π

exp

(
−x

2 + y2

2

)
, x ∈ R

2, (6.11)

where the constant C is chosen such that the initial data satisfies the normalization (1.9).
Figure 1 shows time evolution of the density of each component and related quantities for
four sets of parameters:

(i) βs = 0, B = 0, E1 = 1, E0 = 2, E−1 = 4;
(ii) βs = 0, B = 2, E1 = E0 = E−1 = 1;
(iii) βs = 50, B = 2, E1 = 1, E0 = 2, E−1 = 3;
(iv) βs = 50, B = 2, E1 = 1, E0 = 2, E−1 = 4.
From Fig. 1, we can draw the following conclusions: (i) the total density N(t) is always

conserved. (ii) When βs = 0, if furthermore B = 0, then the density of each component is
also conserved (cf. Fig. 1 for case (i)); otherwise, it evolves periodically if B 6= 0 (cf. Fig.
1 for case (ii)). In addition, if either B = 0 or E1 = E0 = E−1, the quantities Pl,k(t) and
Ql,k(t) are periodic functions (cf. Fig. 1 for cases (i)&(ii)). The above results agree with
those in Lemma 2.3. (iii) If βs 6= 0 but E1 + E−1 = 2E0, only MΨ(t), P (t) and Q(t) are
periodic functions (cf. Fig. 1 for case (iii)), which confirms the results in Lemma 2.2.

Example 2. Dynamics of the angular momentum expectation, we choose Ω = 0.6,
βn = 100, E1 = 1, E0 = 2, and E−1 = 4 in (1.1)-(1.3). The initial data in (1.4) is taken as

ψ0
j (x) = Cre−

r2

2 eimjθ, j = −1, 0, 1, (6.12)

where the constant C is chosen such that the initial data satisfies the normalization in
(1.9). Figure 2 shows time evolution of the angular momentum expectation for four sets
of parameters:

(i) γx = γy = 1, βs = B = 0, m1 = 1, m0 = 0, and m−1 = −1;
(ii) γx = γy = 1, βs = 50, B = 2, m1 = 1, m0 = 0, and m−1 = −1;
(iii)γx = γy = 1, βs = 50, B = 2, mj = 1 (j = −1, 0, 1);
(iv) γx = 1, γy = 2, βs = 50, B = 2, mj = 1 (j = −1, 0, 1).
Fig. 2 suggests that: (i) if γx = γy, the total angular momentum expectation 〈Lz〉(t)

is conserved for any time t ≥ 0 (cf. Fig. 2a,b&c). Furthermore, if βs = B = 0 or m−1 =
m0 = m1 := m, the angular momentum expectation for j-th component, i.e. 〈L̃z〉j(t), is
also conserved for j = −1, 0, 1 (cf. Fig. 2a&c). In addition, if βs = B = 0, 〈Lz〉j(t) is also
conserved for j = −1, 0, 1 (cf. Fig. 2a). (ii) If γx 6= γy, the angular momentum expectation
〈Lz〉(t) and related quantities 〈Lz〉j(t) (j = −1, 0, 1) are, in general, not conserved (cf. Fig.
2d). These numerical results confirm the analytical results in Lemmas 3.1-3.2.

Example 3. Dynamics of the condensate widths, we choose d = 2, Ω = 0.6, βn = 100,
βs = 50, B = 0 and E1 = E0 = E−1 = 0 in the CGPEs (1.1)-(1.3). The initial data is
chosen as

ψ0
1(x) = Cre−

r2

2 eiθ, ψ0
0(x) = 2Cre−

r2

2 , ψ0
−1(x) = Cre−

r2

2 e−iθ (6.13)

with C a constant ensuring that the initial data in (6.13) satisfy the normalization condi-
tion (1.9). Figure 3 shows time evolution of the condensate widths δx(t), δy(t) and δr(t)
for two sets of parameters: (i) γx = γy = 1; (ii) γx = 1 and γy = 2.
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Figure 1: Dynamics of Nj(t), Pl,k(t) and Ql,k(t) in Example 1 for case (i) (left) and case
(ii) (right).
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Figure 1 (cont’d): For case (iii) (left) and case (iv) (right).
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Figure 2: Dynamics of the angular momentum expectation in Example 2 for a). case (i);
b). case (ii).

Figure 3 shows that the condensate width δr(t) is a periodic function when γx = γy.
In addition, δx(t) = δy(t) = δr(t)/2 is also a periodic function (cf. Fig. 3a). While in
general, they are not periodic when γx 6= γy (cf. Fig. 3b).

In fact, the numerical results in the above three Examples not only confirm our an-
alytically results obtained in previous sections but also demonstrate the accuracy of our
numerical method for simulating the dynamics of spin-1 BEC.

Example 4. Interaction of vortices in rotating spin-1 BEC, i.e., we take d = 2,
γx = γy = 1, B = 0 and E1 = E0 = E−1 = 0 in (1.1)-(1.3). The initial data in (1.4) are
chosen as follows:

Case I. Interaction of vortices with the same winding number, i.e.

ψ0
1(x, y) = φ+(x+ x0, y), ψ0

0(x, y) = 2φ+(x, y), ψ0
−1(x, y) = φ+(x− x0, y); (6.14)

Case II. Interaction of vortices with opposite winding numbers, i.e.

ψ0
1(x, y) = φ+(x+ x0, y), ψ0

0(x, y) = 2φ−(x, y), ψ0
−1(x, y) = φ+(x− x0, y); (6.15)

where

φ±(x, y) =
C√
6π

(x± iy)e−(x2+y2)/2, (x, y) ∈ R
2,
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Figure 2 (cont’d): For c). case (iii); d). case (iv).
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Figure 3: Dynamics of the condensate widths in Example 3 for: a). case (i); b). case (ii).

represents a vortex state located at the origin with winding number ±1, and x0 is the
initial position of the vortex. In our simulations, we choose x0 = 0.6 in (6.14) and (6.15).

Figure 4 depicts time evolution of the vortex centers when the interaction parameters
are small, i.e. βn = 10 and βs = 5, for different rotation speed Ω. In fact, when βn and βs

are small, the dynamics of the vortices in cases I and II are quite similar. On the other
hand, the situation becomes more complicated when the interaction parameters βn and
βs are large, especially in case II. Figures 5 and 6 show the densities ρj(x, t) = |ψj(x, t)|2
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Figure 4: Trajectories of vortex centers in Example 4 with βn = 10 and βs = 5, i.e. weak
interaction, for different Ω (left) and time evolution of xj(t) and yj(t) (for j = −1, 0, 1)
when Ω = 0.6 (right): a) for case I; and b) for case II.

(j = 1, 0,−1) and ρ = ρ1 + ρ0 + ρ−1, and the phase Sj (ψj =
√
ρje

iSj , j = −1, 0, 1) at
different times, respectively, with Ω = 0.6, βn = 100 and βs = 90, i.e. strong interaction,
for case I. Figures 7 and 8 show similar results for case II. Figure 9 displays the dynamics
of the angular momentum expectation with Ω = 0.6, βn = 100 and βs = 90 for cases I
and II. In Fig. 4, the symbols ‘+’ and ‘−’ represent the initial location of a vortex with
winding number +1 and −1, respectively. While in Fig. 5-8, they represent the positions
of vortices at a given time t.

From Fig. 4 and additional numerical results not shown here for brevity, we have
the following observation for the vortex interaction in spin-1 BEC when the interaction
parameters βn and βs are small: in both cases I and II, the vortex initially located at
the origin of mF = 0 component does not move during the dynamics; for different Ω,
the trajectories of the other two vortices located in mF = ±1 components could be very
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t = 0 t = 0 t = 0 t = 0

t = 1 t = 1 t = 1 t = 1

t = 5 t = 5 t = 5 t = 5

t = 10 t = 10 t = 10 t = 10

Figure 5: Contour plots of the density ρ−1(t), ρ0(t), ρ1(t) and ρ(t) (from left column to
right column) over the dimensionless domain [−8, 8] × [−8, 8] in Example 4 with Ω = 0.6,
βn = 100 and βs = 90 for case I.

different (cf. Fig.4(left)). In addition, we find that the dynamics of the vortices in cases
I and II are quite similar. For both cases, the number of vortices is always conserved
during our computational time, i.e. t ∈ [0, 10]. On the other hand, from Figs. 5-9 and
additional numerical results, we can draw the following conclusions when the interaction
parameters βn and βs are large: (i) in case I, the vortex initially located at the origin
in mF = 0 component does not move during the dynamics, while the other two vortices
initially located at (±0.6, 0) in spin component mF = ±1 rotate counter clockwise (cf.
Fig. 5). During the dynamics, these three vortices never collide and annihilate. (ii) In
case II, the vortex initially located at the origin in spin component mF = 0 will disappear
and then re-generate after some time (cf. Fig. 8); the other two vortices initially located
at (±0.6, 0) in spin component mF = ±1 start to rotate clockwise at time t = 0 (cf. Fig.
7). (iii) In case II, the number of the vortices is not conserved. During the dynamics, new
vortices are generated near the boundary of each spin component and they propagate into
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t = 0 t = 0 t = 0

t = 1 t = 1 t = 1

t = 5 t = 5 t = 5

t = 10 t = 10 t = 10

Figure 6: Contour plots of the phase S−1(t), S0(t) and S1(t) (from left column to right
column) over the dimensionless domain [−6, 6] × [−6, 6] in Example 4 with Ω = 0.6,
βn = 100 and βs = 90 for case I.

the condensate and interact with other vortices in the same spin-component and different
spin-components. (iv) In addition, our extensive numerical results show that the dynamics
and interaction patterns highly depend on x0 in (6.14) and (6.15). Similar to the single
component case [21, 35], the above results show that the interaction of vortices in rotating
spin-1 BEC might be very interesting and complicated, and more systematic study will
be carried out in our future study.

7 Concluding remarks

We have studied analytically and numerically the dynamical properties of the coupled
Gross-Pitaevskii equations (CGPEs) without/with an angular momentum rotation term
and an external magnetic field for the dynamics of nonrotating/rotating spin-1 Bose-
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Figure 7: Contour plots of the density ρ−1(t), ρ0(t), ρ1(t) and ρ(t) (from left column to
right column) over the dimensionless domain [−8, 8] × [−8, 8] in Example 4 with Ω = 0.6,
βn = 100 and βs = 90 for case II.

Einstein condensates (BECs). Along the analytical front, we obtained a system of first
order ordinary differential equations (ODEs) governing the dynamics of the density of
each component and related quantities and solved the ODEs analytically in a few cases;
proved the conservation of the angular momentum expectation when the external trap-
ping potential is radially symmetric in two dimensions or cylindrically symmetric in three
dimensions; derived a second order ODE for the dynamics of the condensate width and
showed that it is a periodic function without/with a perturbation; and constructed the
analytical solution of the CGPEs when the initial data is chosen as a stationary state
with its center-of-mass shifted away from the external trap center. Along the numerical
front, we discussed numerical methods for solving the CGPEs and applied them to study
numerically the dynamics of spin-1 BEC. Our numerical results confirm the analytical
results of CGPEs for the dynamics of spin-1 BEC.
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t = 0 t = 0 t = 0
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t = 10 t = 10 t = 10

Figure 8: Contour plots of the phase S−1(t), S0(t) and S1(t) (from left column to right
column) over the dimensionless domain [−6, 6] × [−6, 6] in Example 4 with Ω = 0.6,
βn = 100 and βs = 90 for case II.
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