Fixed Income Models

Exercise Sheet 2
(Due: Tuesday 11/16/2010)

6. (Ito’s formula)
 Let \(W \) be a Brownian motion. For arbitrary \(n \in \mathbb{N} \) find a formula for \(\int_0^t W^n(s)\,dW(s) \).

7. (Ito’s formula, Integration by parts)
 Let \(W \) be a Brownian motion. Prove the following “integration by parts” formula for \(n \in \mathbb{N} \):
 \[
 \int_0^t s^n\,dW(s) = s^nW(t) - \int_0^t ns^{n-1}W(s)\,ds.
 \]

8. (Brownian motion)
 Show that if \(W \) is a Brownian motion, then
 \[
 \mathbb{E}(W^2(t)) = t.
 \]

9. (Brownian motion, Covariance)
 Show that for a Brownian motion \(W \), the covariance between two time points \(s \) and \(t \) can be computed as
 \[
 \text{Cov}(W(s), W(t)) = \min\{s, t\}.
 \]

10. (Brownian motion)
 Let \(Y \) be a standard normally distributed random variable and define \(X(t) = \sqrt{t}Y \). Is the process \(X \) a Brownian motion?

11. (Log-normal distribution)
 Let \(Y \) be a normally distributed random variable with \(\mathbb{E}(Y) = \mu \) and \(\mathbb{V}(Y) = \sigma^2 \). Show that
 \[
 \mathbb{E}(e^Y) = e^{\mu + \frac{\sigma^2}{2}}.
 \]

12. (Generalized geometric Brownian motion)
 Compute
 \[
 \mathbb{E}(X(t)|\mathcal{F}(s))
 \]
 and
 \[
 \mathbb{V}(X(t)|\mathcal{F}(s)),
 \]
 where \(X \) is the solution of the SDE
 \[
 dX(t) = \rho(t)X(t)\,dt + \sigma(t)X(t)\,dW(t).
 \]

13. (Stochastic Leibniz rule)
 Let \(\mu \in \mathbb{R} \) and \(\sigma > 0 \). Consider the two processes \(Y \) and \(Z \) with
 \[
 dY(t) = Y(t)\left(\mu\,dt + \sigma\,dW(t)\right)
 \]
 and
 \[
 Z(t) = \exp\left(-\frac{1}{2}\sigma^2-t-\mu\sigma W(t)\right).
 \]
 Determine the SDE that is satisfied by \(YZ \).

14. (Option price)
 Let \(K > 0 \). Assume \(Y \) is a lognormally distributed random variable with \(\mathbb{E}(\ln(Y)) = M \) and \(\mathbb{V}(\ln(Y)) = V^2 \). Show that
 \[
 \mathbb{E}\left((Y - K)^+\right) = e^{M+\frac{V^2}{2}} \Phi\left(M - V\sqrt{\frac{M-K}{V}}\right) - K \Phi\left(M - \ln(K)\sqrt{\frac{M-K}{V}}\right),
 \]
 where \(\Phi \) is the cdf of the standard normal distribution.