Dynamic Programming

- An algorithm design technique similar to divide and conquer but unlike divide&conquer, subproblems may overlap in this case.

- Divide and conquer
 - Partition the problem into subproblems (may overlap)
 - Solve the subproblems recursively
 - Combine the solutions to solve the original problem

- Used for optimization problems
 - Goal: find an optimal solution (minimum or maximum)
 - There may be many solutions that lead to an optimal value
Dynamic Programming

- Applicable when subproblems are not independent
 - Subproblems share subsubproblems

 \[
 \binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}
 \]

 e.g.: Combinations:

 - \(\binom{n}{1} = n \)
 - \(\binom{n}{n} = 1 \)

- Dynamic programming solves every subproblem and stores the answer in a table
Example: Combinations

\[
\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1} \\
\binom{n}{1} = n \\
\binom{n}{n} = 1
\]
Dynamic Programming Algorithm

1. **Characterize** the structure of an optimal solution

2. **Recursively** define the value of an optimal solution
 - An optimal solution to a problem contains within it an optimal solution to subproblems.
 - Typically, the recursion tree contains many overlapping subproblems.

3. **Compute** the value of an optimal solution in a bottom-up fashion
 - Optimal solution to the entire problem is build in a bottom-up manner from optimal solutions to subproblems.

4. **Construct** an optimal solution from computed information
Longest Common Subsequence

- Given two sequences
 \[X = \langle x_1, x_2, \ldots, x_m \rangle \]
 \[Y = \langle y_1, y_2, \ldots, y_n \rangle \]
 find a maximum length common subsequence (LCS) of \(X \) and \(Y \)

- *e.g.*: If \(X = \langle A, B, C, B, D, A, B \rangle \)
 Subsequences of \(X \):
 A subset of elements in the sequence taken in order
 \[\langle A, B, D \rangle, \langle B, C, D, B \rangle, \langle B, C, D, A, B \rangle \text{ etc.} \]
Example

- \(\langle B, C, B, A \rangle \) and \(\langle B, D, A, B \rangle \) are longest common subsequences of \(X \) and \(Y \) \((\text{length} = 4) \)

- \(\langle B, C, A \rangle \), however, is not a LCS of \(X \) and \(Y \)
Brute-Force Solution

- For every subsequence of X, check whether it’s a subsequence of Y

- There are 2^m subsequences of X to check

- Each subsequence takes $\Theta(n)$ time to check
 - scan Y for first letter, from there scan for second, and so on

- **Running time:** $\Theta(n2^m)$
Making the choice

\[X = \langle A, B, D, G, E \rangle \]
\[Y = \langle Z, B, D, E \rangle \]

- **Choice:** include one element into the common sequence (E) and solve the resulting subproblem

 \[X = \langle A, B, D, G \rangle \]
 \[Y = \langle Z, B, D \rangle \]

- **Choice:** exclude an element from a string and solve the resulting subproblem
Notations

- Given a sequence $X = \langle x_1, x_2, \ldots, x_m \rangle$
 we define the **i-th prefix** of X, for $i = 0, 1, 2, \ldots, m$

 $$X_i = \langle x_1, x_2, \ldots, x_i \rangle$$

- $c[i, j] = \text{the length of a LCS of the sequences}$
 $X_i = \langle x_1, x_2, \ldots, x_i \rangle$ and $Y_j = \langle y_1, y_2, \ldots, y_j \rangle$
A Recursive Solution

Case 1: $x_i = y_j$

e.g.: $X_i = \langle A, B, D, G, E \rangle$

$Y_j = \langle Z, B, D, E \rangle$

$c[i, j] = c[i - 1, j - 1] + 1$

- Append $x_i = y_j$ to the LCS of X_{i-1} and Y_{j-1}

- Must find a LCS of X_{i-1} and Y_{j-1}
A Recursive Solution

Case 2: \(x_i \neq y_j \)

* e.g.: \(X_i = \langle A, B, D, G \rangle \)
 \(Y_j = \langle Z, B, D \rangle \)

• Must solve two problems
 • find a LCS of \(X_{i-1} \) and \(Y_j \): \(X_{i-1} = \langle A, B, D \rangle \) and \(Y_j = \langle Z, B, D \rangle \)
 • find a LCS of \(X_i \) and \(Y_{j-1} \): \(X_i = \langle A, B, D, G \rangle \) and \(Y_{j-1} = \langle Z, B \rangle \)

\[
c[i, j] = \max \{ c[i - 1, j], c[i, j-1] \}
\]

• Optimal solution to a problem includes optimal solutions to subproblems
Overlapping Subproblems

- To find a LCS of \((X_m \text{ and } Y_n)\)
 - we may need to find
 - the LCS between \(X_m\) and \(Y_{n-1}\) and that of \(X_{m-1}\) and \(Y_n\)
 - Both of the above subproblems has the subproblem of finding the LCS of \((X_{m-1} \text{ and } Y_{n-1})\)

- Subproblems share subsubproblems
Computing the Length of the LCS

\[
c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
\begin{cases}
c[i-1, j-1] + 1 & \text{if } x_i = y_j \\
\max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j
\end{cases} & \text{if } i > 0 \text{ and } j > 0
\end{cases}
\]

<table>
<thead>
<tr>
<th></th>
<th>Y_j:</th>
<th>Y_1</th>
<th>Y_2</th>
<th>Y_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x_i:</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>x_1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>x_2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>m</td>
<td>x_m</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First:
- \(x_1 \)
- \(x_2 \)

Second:
- \(x _m \)

\(i \) is the index of the first set, \(j \) is the index of the second set.
A matrix $b[i, j]$:

- For a subproblem $[i, j]$ it tells us what choice was made to obtain the optimal value.
 - If $x_i = y_j$
 $$b[i, j] = "\downarrow"$$
 - Else, if $c[i - 1, j] \geq c[i, j - 1]$
 $$b[i, j] = "\uparrow"$$
 - Else
 $$b[i, j] = "\leftarrow"$$

A matrix $b[i, j]$:

$$c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
 c[i-1, j-1] + 1 & \text{if } x_i = y_j \\
 \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j
\end{cases}$$
Example

\[
X = \langle A, B, C, B, D, A, B \rangle
\]
\[
Y = \langle B, D, C, A, B, A \rangle
\]

If \(x_i = y_j \),
\[
b[i, j] = " \downarrow \uparrow "
\]
else if \(c[i - 1, j] \geq c[i, j - 1] \),
\[
b[i, j] = " \uparrow \uparrow "
\]
else
\[
b[i, j] = " \leftarrow \rightarrow "
\]

\[
c[i, j] = \begin{cases}
0 & \text{if } i = 0 \text{ or } j = 0 \\
 c[i-1, j-1] + 1 & \text{if } x_i = y_j \\
 \max(c[i, j-1], c[i-1, j]) & \text{if } x_i \neq y_j
\end{cases}
\]
Constructing a LCS

- Start at \(b[m, n] \) and follow the arrows
- When we encounter a \(\Rightarrow \) in \(b[i, j] \) \(\Rightarrow x_i = y_j \) is an element of the LCS

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>D</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>B</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
LCS-LENGTH(X, Y, m, n)

1. for i ← 1 to m
2. do c[i, 0] ← 0
3. for j ← 0 to n
4. do c[0, j] ← 0
5. for i ← 1 to m
6. do for j ← 1 to n
7. do if x_i = y_j
8. then c[i, j] ← c[i - 1, j - 1] + 1
9. b[i, j] ← "\downarrow"
10. else if c[i - 1, j] ≥ c[i, j - 1]
11. then c[i, j] ← c[i - 1, j]
12. b[i, j] ← "↑"
13. else c[i, j] ← c[i, j - 1]
14. b[i, j] ← "←"
15. return c and b

If one of the sequences is empty, the length of the LCS is zero

Case 1: x_i = y_j
Case 2: x_i ≠ y_j

Running time : \(\Theta(mn) \)
PRINT-LCS(b, X, i, j)

1. if i = 0 or j = 0
2. then return
3. if b[i, j] = " \"
4. then PRINT-LCS(b, X, i - 1, j - 1)
5. print X_i
6. elseif b[i, j] = "↑"
7. then PRINT-LCS(b, X, i - 1, j)
8. else PRINT-LCS(b, X, i, j - 1)

Initial call: PRINT-LCS(b, X, length[X], length[Y])

Running time: \(\Theta(m + n) \)
Improving the Code

- What can we say about how each entry $c[i, j]$ is computed?
 - It depends only on $c[i - 1, j - 1]$, $c[i - 1, j]$, and $c[i, j - 1]$
 - Eliminate table b and compute in $O(1)$ which of the three values was used to compute $c[i, j]$
 - We save $\Theta(mn)$ space from table b
 - However, we do not asymptotically decrease the auxiliary space requirements: still need table c

- If we only need the length of the LCS
 - LCS-LENGTH works only on two rows of c at a time
 - The row being computed and the previous row
 - We can reduce the asymptotic space requirements by storing only these two rows