Quantum Two
Motion in 3D as a Direct Product
In the last topic, we saw how to actually work in direct product spaces, i.e., how to compute inner products, and construct basis vectors, and various operators of interest.
In the last topic, we saw how to **actually work** in direct product spaces, i.e., how to compute inner products, and construct basis vectors, and various operators of interest.

To make these formal definitions more concrete we consider a few examples.
In the last topic, we saw how to actually work in direct product spaces, i.e., how to compute inner products, and construct basis vectors, and various operators of interest.

To make these formal definitions more concrete we consider a few examples.

Consider, e.g., our familiar case of a single spinless quantum particle moving in 3 dimensions.
In the last topic, we saw how to **actually work** in direct product spaces, i.e., how to compute inner products, and construct basis vectors, and various operators of interest.

To make these formal definitions more concrete we consider a few examples.

Consider, e.g., our familiar case of a **single spinless quantum particle moving in 3 dimensions**.

It turns out that this quantum state space can be written as the direct product of 3 spaces,

\[
S^{3D} = S^x \otimes S^y \otimes S^z
\]
In the last topic, we saw how to actually work in direct product spaces, i.e., how to compute inner products, and construct basis vectors, and various operators of interest.

To make these formal definitions more concrete we consider a few examples.

Consider, e.g., our familiar case of a single spinless quantum particle moving in 3 dimensions.

It turns out that this quantum state space can be written as the direct product of 3 spaces,

$$S^{3D} = S^x \otimes S^y \otimes S^z$$

each of which is describes a quantum particle moving along one of the three orthogonal Cartesian axes.
For a particle moving along each axis, there is / are different state space basis vectors & operators of interest:

\[S^x \leftrightarrow \{|x\}\leftrightarrow X, K_x, P_x, \cdots \]
For a particle moving along each axis, there is are different state space basis vectors & operators of interest:

<table>
<thead>
<tr>
<th>State Space</th>
<th>Basis Vectors</th>
<th>&</th>
<th>Operators of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^x</td>
<td>${</td>
<td>x\rangle }$</td>
<td>\leftrightarrow</td>
</tr>
<tr>
<td>S^y</td>
<td>${</td>
<td>y\rangle }$</td>
<td>\leftrightarrow</td>
</tr>
</tbody>
</table>
For a particle moving along each axis, there is one different state space basis vectors & operators of interest:

<table>
<thead>
<tr>
<th>State Space</th>
<th>Basis Vectors</th>
<th>Operators of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^x</td>
<td>${</td>
<td>x\rangle}$</td>
</tr>
<tr>
<td>S^y</td>
<td>${</td>
<td>y\rangle}$</td>
</tr>
<tr>
<td>S^z</td>
<td>${</td>
<td>z\rangle}$</td>
</tr>
</tbody>
</table>
For a particle moving along each axis, there is /are different

<table>
<thead>
<tr>
<th>state space</th>
<th>basis vectors</th>
<th>&</th>
<th>operators of interest:</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^x</td>
<td>${</td>
<td>x\rangle}$</td>
<td>\longleftrightarrow</td>
</tr>
<tr>
<td>S^y</td>
<td>${</td>
<td>y\rangle}$</td>
<td>\longleftrightarrow</td>
</tr>
<tr>
<td>S^z</td>
<td>${</td>
<td>z\rangle}$</td>
<td>\longleftrightarrow</td>
</tr>
</tbody>
</table>

Construct now the **direct product space** $S^{3D} = S^x \otimes S^y \otimes S^z$
For a particle moving along each axis, there is / are different state space basis vectors & operators of interest:

\[
\begin{align*}
S^x & \longleftrightarrow \{ |x\rangle \} \quad \longleftrightarrow \quad X, K_x, P_x, \cdots \\
S^y & \longleftrightarrow \{ |y\rangle \} \quad \longleftrightarrow \quad Y, K_y, P_y, \cdots \\
S^z & \longleftrightarrow \{ |z\rangle \} \quad \longleftrightarrow \quad Z, K_z, P_z, \cdots
\end{align*}
\]

Construct now the **direct product space** \(S^{3D} = S^x \otimes S^y \otimes S^z \) which according to the rules has an ONB of direct product states.
For a particle moving along each axis, there is a different state space and basis vectors & operators of interest:

<table>
<thead>
<tr>
<th>State</th>
<th>Basis Vectors</th>
<th>Operators of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^x</td>
<td>${</td>
<td>x\rangle}$</td>
</tr>
<tr>
<td>S^y</td>
<td>${</td>
<td>y\rangle}$</td>
</tr>
<tr>
<td>S^z</td>
<td>${</td>
<td>z\rangle}$</td>
</tr>
</tbody>
</table>

Construct now the direct product space $S^{3D} = S^x \otimes S^y \otimes S^z$ which according to the rules has an ONB of direct product states

$$|x, y, z\rangle = |x\rangle \otimes |y\rangle \otimes |z\rangle = |r\rangle$$

each labeled by 3 Cartesian coordinates of the position vectors of R^3.
According to the rules for taking inner products in direct product spaces,

\[\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle \]
According to the rules for taking inner products in direct product spaces,

\[\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle = \delta (x - x') \delta (y - y') \delta (z - z') \]
According to the rules for taking inner products in direct product spaces,

\[\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle = \delta(x - x') \delta(y - y') \delta(z - z') \]

By assumption any state in this space can be expanded in terms of this basis, i.e.,
According to the rules for taking inner products in direct product spaces,

\[\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle = \delta(x - x') \delta(y - y') \delta(z - z') \]

By assumption any state in this space can be expanded in terms of this basis, i.e.,

\[|\psi\rangle = \int dx \int dy \int dz \, |x, y, z\rangle \langle x, y, z | \psi\rangle \]
According to the rules for taking inner products in direct product spaces,

$$\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle = \delta(x - x') \delta(y - y') \delta(z - z')$$

By assumption any state in this space can be expanded in terms of this basis, i.e.,

$$|\psi\rangle = \int dx \int dy \int dz \: |x, y, z\rangle \langle x, y, z | \psi \rangle = \int dx \int dy \int dz \: \psi(x, y, z) |x, y, z\rangle,$$
According to the rules for taking inner products in direct product spaces,

$$\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle = \delta(x - x') \delta(y - y') \delta(z - z')$$

By assumption any state in this space can be expanded in terms of this basis, i.e.,

$$|\psi\rangle = \int dx \int dy \int dz \ |x, y, z\rangle \langle x, y, z | \psi\rangle = \int dx \int dy \int dz \ \psi(x, y, z) \ |x, y, z\rangle,$$

or in more compact notation

$$|\psi\rangle = \int d^3r \ |\vec{r}\rangle \langle \vec{r} | \psi\rangle = \int d^3r \ \psi(\vec{r}) \ |\vec{r}\rangle$$
According to the rules for taking inner products in direct product spaces,

$$\langle x, y, z | x', y', z' \rangle = \langle x | x' \rangle \langle y | y' \rangle \langle z | z' \rangle = \delta(x - x') \delta(y - y') \delta(z - z')$$

By assumption any state in this space can be expanded in terms of this basis, i.e.,

$$|\psi\rangle = \int dx \int dy \int dz \ |x, y, z\rangle \langle x, y, z|\psi\rangle = \int dx \int dy \int dz \ \psi(x, y, z) \ |x, y, z\rangle,$$

or in more compact notation

$$|\psi\rangle = \int d^3r \ |\vec{r}\rangle \langle \vec{r}|\psi\rangle = \int d^3r \ \psi(\vec{r}) |\vec{r}\rangle$$

Thus, each state $|\psi\rangle$ is represented in this basis by a wave function

$$\psi(\vec{r}) = \psi(x, y, z)$$

of these three independent (quantum) mechanical degrees of freedom.
Note that by forming the space as a direct product, the individual components of the position operator X, Y, Z automatically commute with one another, since they come from different factor spaces.
Note that by forming the space as a direct product, the individual components of the position operator \(X, Y, Z \) automatically commute with one another, since they come from different factor spaces.

Indeed, the canonical commutation relations

\[
[X_i, X_j] = 0 = [P_i, P_j] \\
[X_i, P_j] = i\hbar \delta_{i,j}
\]
Note that by forming the space as a direct product, the individual components of the position operator X, Y, Z automatically commute with one another, since they come from different factor spaces.

Indeed, the canonical commutation relations

$$[X_i, X_j] = 0 = [P_i, P_j]$$

$$[X_i, P_j] = i\hbar\delta_{i,j}$$

automatically follow from the rules for extending operators from different factor spaces into the direct product space.
Note that by forming the space as a direct product, the individual components of the position operator X, Y, Z automatically commute with one another, since they come from different factor spaces.

Indeed, the canonical commutation relations

\[
[X_i, X_j] = 0 = [P_i, P_j]
\]

\[
[X_i, P_j] = i\hbar\delta_{i,j}
\]

automatically follow from the rules for extending operators from different factor spaces into the direct product space.

The action of the individual components of the position operator and momentum operators also follow from the properties of the direct product space, i.e.,
Note that by forming the space as a direct product, the individual components of
the position operator X, Y, Z automatically commute with one another, since they
come from different factor spaces.

Indeed, the canonical commutation relations

\[[X_i, X_j] = 0 = [P_i, P_j] \]
\[[X_i, P_j] = i\hbar\delta_{i,j} \]

automatically follow from the rules for extending operators from different factor
spaces into the direct product space.

The action of the individual components of the position operator and momentum
operators also follow from the properties of the direct product space, i.e.,

\[X\left| x, y, z \right> = X\left| x \right> \mathbf{1}_y \left| y \right> \mathbf{1}_z \left| z \right> = x\left| x, y, z \right> \]
It is left to the viewer to verify that all other properties of the space of a single particle moving in 3 dimensions follow entirely from the properties of the direct product of 3 one-dimensional factor spaces.
State Space of a Spin $\frac{1}{2}$ Particle
as a Direct Product Space
Another situation in which the concept of a direct product space becomes valuable is in treating the **internal, or spin degrees of freedom** of quantum mechanical particles.
Another situation in which the concept of a direct product space becomes valuable is in treating the internal, or spin degrees of freedom of quantum mechanical particles.

It is a well-established experimental fact that the quantum states of most fundamental particles are not completely specified by properties related simply to their motion through space.
Another situation in which the concept of a direct product space becomes valuable is in treating the **internal, or spin degrees of freedom** of quantum mechanical particles.

It is a well-established experimental fact that the quantum states of most fundamental particles are **not** completely specified by properties related simply to **their motion through space**.

In general, each quantum particle possesses an **internal structure** characterized by a vector observable \(\hat{S} \), the components \(S_x, S_y, S_z \) of which **transform under rotations like the components of angular momentum**.
Another situation in which the concept of a direct product space becomes valuable is in treating the **internal, or spin degrees of freedom** of quantum mechanical particles.

It is a well-established experimental fact that the quantum states of most fundamental particles are **not** completely specified by properties related simply to their motion through space.

In general, each quantum particle possesses an **internal structure** characterized by a vector observable \hat{S}, the components S_x, S_y, S_z of which **transform under rotations like the components of angular momentum**.

Such a particle is said to possess **spin degrees of freedom**.
For the constituents of atoms (electrons, neutrons, protons) the internal state of each particle can be represented as a superposition of two orthonormal eigenvectors

\[\{|s\rangle\} = \{|1/2\rangle, \|-1/2\rangle\} \]

of the operator \(S_z \) with eigenvalues \(s = +1/2 \) and \(s = -1/2 \) (in units of \(\hbar \)).
For the constituents of atoms (electrons, neutrons, protons) the internal state of each particle can be represented as a superposition of two orthonormal eigenvectors

$$\{|s\rangle\} = \{|1/2\rangle, \ |-1/2\rangle\}$$

of the operator S_z with eigenvalues $s = +1/2$ and $s = -1/2$ (in units of \hbar).

A particle whose internal state has $s = 1/2$ is said to be spin up,
For the constituents of atoms (electrons, neutrons, protons) the internal state of each particle can be represented as a superposition of two orthonormal eigenvectors

\[\{|s\rangle\} = \{|1/2\rangle, | -1/2 \rangle\} \]

of the operator \(S_z \) with eigenvalues \(s = +1/2 \) and \(s = -1/2 \) (in units of \(\hbar \)).

A particle whose internal state has \(s = 1/2 \) is said to be **spin up**,

A particle whose internal state has \(s = -1/2 \), is said to be **spin down**.
For the constituents of atoms (electrons, neutrons, protons) the internal state of each particle can be represented as a superposition of two orthonormal eigenvectors

\[\{ |s\rangle \} = \{ |1/2\rangle, | -1/2 \rangle \} \]

of the operator \(S_z \) with eigenvalues \(s = +1/2 \) and \(s = -1/2 \) (in units of \(\hbar \)).

A particle whose internal state has \(s = 1/2 \) is said to be **spin up**,

A particle whose internal state has \(s = -1/2 \), is said to be **spin down**.

These two orthogonal internal states of the particle span a 2-dimensional state space, \(S_{\text{spin}} \) referred to as the particle’s **spin space**.
For the constituents of atoms (electrons, neutrons, protons) the internal state of each particle can be represented as a superposition of two orthonormal eigenvectors

$$\{|s\rangle\} = \{|1/2\rangle, \quad |-1/2\rangle\}$$

of the operator S_z with eigenvalues $s = +1/2$ and $s = -1/2$ (in units of \hbar).

A particle whose internal state has $s = 1/2$ is said to be spin up,

A particle whose internal state has $s = -1/2$, is said to be spin down.

These two orthogonal internal states of the particle span a 2-dimensional state space, S_{spin} referred to as the particle’s spin space.

The spin-degrees of freedom are assumed to be independent of the spatial degrees of freedom of the center of mass, as with, e.g., a classical spinning top.
The main point here, of course, is that the **total state space** of a spin-1/2 particle can then be represented as a direct product

\[S_{\text{spin-1/2}} = S_{\text{spatial}} \otimes S_{\text{spin}} \]

of the quantum space describing **the particle's translational motion** (spanned by the position eigenstates \(|\vec{r}\rangle \), and the 2-dimensional spin space spanned by the spin eigenstates \(|s\rangle \) of \(S_z \).
The main point here, of course, is that the total state space of a spin-1/2 particle can then be represented as direct product

$$S_{\text{spin-1/2}} = S_{\text{spatial}} \otimes S_{\text{spin}}$$

of the quantum space describing the particle's translational motion (spanned by the position eigenstates $$|\vec{r}\rangle$$, and the 2-dimensional spin space spanned by the spin eigenstates $$|s\rangle$$ of $$S_z$$.

We can therefore construct for the total space, an ONB of direct product states

$$|\vec{r}, s\rangle = |\vec{r}\rangle \otimes |s\rangle$$
The main point here, of course, is that the **total state space** of a spin-1/2 particle can then be represented as direct product

\[S_{\text{spin-1/2}} = S_{\text{spatial} \otimes S_{\text{spin}}} \]

of the quantum space describing **the particle's translational motion** (spanned by the position eigenstates \(|\vec{r}\rangle \)), and the 2-dimensional spin space spanned by the spin eigenstates \(|s\rangle \) of \(S_z \).

We can therefore construct for the total space, an ONB of direct product states

\[|\vec{r}, s\rangle = |\vec{r}\rangle \otimes |s\rangle \]

which then automatically satisfy the orthonormality and completeness relations

\[\langle \vec{r}' , s' | \vec{r}, s \rangle = \delta(\vec{r} - \vec{r}') \delta_{s,s'} \quad \text{and} \]

41
The main point here, of course, is that the **total state space** of a spin-1/2 particle can then be represented as direct product

\[S_{\text{spin-1/2}} = S_{\text{spatial}} \otimes S_{\text{spin}} \]

of the quantum space describing the **particle's translational motion** (spanned by the position eigenstates \(|\vec{r}\rangle\), and the 2-dimensional spin space spanned by the spin eigenstates \(|s\rangle\) of \(S_z\).

We can therefore construct for the total space, an ONB of direct product states

\[|\vec{r}, s\rangle = |\vec{r}\rangle \otimes |s\rangle \]

which then automatically satisfy the orthonormality and completeness relations

\[
\langle \vec{r}', s'|\vec{r}, s\rangle = \delta(\vec{r} - \vec{r}')\delta_{s,s'} \quad \text{and} \quad \sum_{s=\pm 1/2} \int d^3r \ |\vec{r}, s\rangle \langle \vec{r}, s| = 1
\]
An arbitrary state of a spin-1/2 particle can then be expanded in this basis in the usual way

\[|\psi\rangle = \sum_{s=\pm 1/2} \int d^3r \ \psi_s(\vec{r}) |\vec{r}, s\rangle \]
An arbitrary state of a spin-1/2 particle can then be expanded in this basis in the usual way

$$|\psi\rangle = \sum_{s = \pm 1/2} \int d^3r \psi_s(\vec{r}) |\vec{r}, s\rangle = \int d^3r \left[\psi_+(\vec{r}) |\vec{r}, 1/2\rangle + \psi_- (\vec{r}) |\vec{r}, -1/2\rangle \right]$$

and thus requires a two component wave function (or spinor).
An arbitrary state of a spin-1/2 particle can then be expanded in this basis in the usual way

$$|\psi\rangle = \sum_{s=\pm 1/2} \int d^3r \, \psi_s(\vec{r}) |\vec{r}, s\rangle = \int d^3r \, [\psi_+ (\vec{r}) |\vec{r}, 1/2\rangle + \psi_-(\vec{r}) |\vec{r}, -1/2\rangle]$$

and thus requires a two component wave function (or spinor).

In other words, to specify the state of the system we must provide two separate complex-valued functions $\psi_+ (\vec{r})$ and $\psi_-(\vec{r})$ such that
An arbitrary state of a spin-1/2 particle can then be expanded in this basis in the usual way

$$|\psi\rangle = \sum_{s=\pm 1/2} \int d^3r \, \psi_s(\vec{r}) |\vec{r}, s\rangle = \int d^3r \, [\psi_+(\vec{r}) |\vec{r}, 1/2\rangle + \psi_-(\vec{r}) |\vec{r}, -1/2\rangle]$$

and thus requires a two component wave function (or spinor).

In other words, to specify the state of the system we must provide two separate complex-valued functions $\psi_+(\vec{r})$ and $\psi_-(\vec{r})$ such that

$$|\psi_+(\vec{r})|^2$$ gives the probability density to find the particle spin-up at \vec{r}.
An arbitrary state of a spin-1/2 particle can then be expanded in this basis in the usual way

\[|\psi\rangle = \sum_{s=\pm 1/2} \int d^3 r \, \psi_s(\vec{r}) |\vec{r}, s\rangle = \int d^3 r \left[\psi_+(\vec{r}) |\vec{r}, 1/2\rangle + \psi_- (\vec{r}) |\vec{r}, -1/2\rangle \right] \]

and thus requires a **two component wave function (or spinor)**.

In other words, to specify the state of the system we must provide two separate complex-valued functions \(\psi_+ (\vec{r}) \) and \(\psi_- (\vec{r}) \) such that

\[|\psi_+ (\vec{r})|^2 \text{ gives the probability density to find the particle spin-up at } \vec{r} \]

\[|\psi_- (\vec{r})|^2 \text{ gives the probability density to find the particle spin-down at } \vec{r} \]
Note also that, through the rules of the inner product, all spin operators $\vec{S}, S_z, S^2, \ldots$ automatically commute with all spatial operators. Thus, the concept of a direct product space arises in many different situations in quantum mechanics. When such a structure is properly identified it can help elucidate the structure of the underlying state space.
Note also that, through the rules of the inner product, all spin operators $\vec{S}, S_z, S^2, \ldots$ automatically commute.
Note also that, through the rules of the inner product, all spin operators automatically commute with all spatial operators.

\[\vec{S}, S_z, S^2, \ldots \]

\[\vec{R}, \vec{K}, \vec{P}, \ldots \]
Note also that, through the rules of the inner product, all spin operators $\hat{S}, S_z, S^2, \ldots$ automatically commute with all spatial operators $\vec{R}, \vec{K}, \vec{P}, \ldots$

Thus, the concept of a direct product space arises in many different situations in quantum mechanics.
Note also that, through the rules of the inner product, all spin operators, \(\vec{S}, S_z, S^2, \ldots \) automatically commute with all spatial operators, \(\vec{R}, \vec{K}, \vec{P}, \ldots \).

Thus, the concept of a direct product space arises in many different situations in quantum mechanics.

When such a structure is properly identified it can help elucidate the structure of the underlying state space.
Having explored briefly some concrete examples of direct product spaces, we return in our next segment to the subject which provided the motivation for our mathematical exploration of them, namely
Having explored briefly some concrete examples of direct product spaces, we return in our next segment to the subject which provided the motivation for our mathematical exploration of them, namely ...

a description of the state space, possible basis vectors, and operators of interest, for a system of N particles of various types (spinless or not) moving in different numbers of possible spatial dimensions.