Synopsis

The goal of this assignment is for you to apply your knowledge of probability and matrices to implement a Markov Chain weather prediction program. These are individual assignments and plagiarism will not be tolerated. You must write your code from scratch in C++ or Python. You are free to use 3rd party libraries, except problem and math specific ones.

Markov Chain weather prediction

A very simple method for weather prediction is to predict tomorrow’s weather based solely on today’s weather. For example, if you knew that there is a certain chance that a rainy day (R) will be followed by a rainy day and that there is a certain chance that a dry day (D) will be followed by a dry day, then you can give probabilities for what tomorrow’s weather will be based on today’s weather, as well as predict the weather on subsequent days.

A Markov Chain is a process in which the probability of a system being in a particular state at a given observation period depends only on its state at the preceding observation period. In other words, $S_t = f(S_{t-1})$. The probability that the system is in state j at observation period t is denoted by $p_j^{(t)}$. The set of probabilities at observation period t for a system with n states is denoted by $P^{(t)} = \begin{bmatrix} p_1^{(t)} \\ p_2^{(t)} \\ \vdots \\ p_n^{(t)} \end{bmatrix}$.

Assuming that the weather is either dry (D) or raining (R), the first problem you need to solve in predicting weather in this fashion, is to obtain the transition probabilities based on an observation record. For example, given the following thirteen day observation record:

RRRDDDDDRDRD

you can compute the following transition probabilities:

- $R \rightarrow R$: $\frac{3}{6} = \frac{1}{2}$
- $R \rightarrow D$: $\frac{3}{6} = \frac{1}{2}$
- $D \rightarrow D$: $\frac{4}{6} = \frac{2}{3}$
- $D \rightarrow R$: $\frac{2}{6} = \frac{1}{3}$
The associated transition matrix T is then:

$$T = \begin{pmatrix} D & R \\ R & D \end{pmatrix}$$

Assuming that the current day, the starting point of the prediction, is dry, the initial state vector for this problem is $P^{(0)} = \begin{bmatrix} p^{(0)}_1 \\ p^{(0)}_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

To predict tomorrow’s weather based on today’s we need to calculate $P^{(1)} = f(P^{(0)})$ with f being the transition function such that $P^{(t)} = f(P^{(t-1)})$.

$$f(P^{(t-1)}) = T \cdot P^{(t-1)} = \begin{pmatrix} \frac{2}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} \end{pmatrix} \cdot P^{(t-1)}$$

Using the associative properties of matrices and scalars we have:

$$P^{(t)} = T \cdot P^{(t-1)} = T \cdot T \cdot P^{(t-2)} \ldots = T^t \cdot P^{(0)}$$

Conclusion: using this Markov Chain model, the weather prediction for observation period t depends only on the transition matrix T and the initial state vector $P^{(0)}$.

Tomorrow’s weather prediction is $P^{(1)}$, the weather prediction for the day after tomorrow is $P^{(2)}$, etc. Here are some sample computations:

$$P^{(1)} = T \cdot P^{(0)} \approx \begin{bmatrix} \frac{2}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0.6667 \\ 0.3333 \end{bmatrix}$$

$$P^{(2)} = T^2 \cdot P^{(0)} \approx \begin{bmatrix} 0.6111 & 0.5833 \\ 0.3889 & 0.4167 \end{bmatrix} \begin{bmatrix} 0.6667 \\ 0.3333 \end{bmatrix}$$

$$P^{(3)} = T^3 \cdot P^{(0)} \approx \begin{bmatrix} 0.6019 & 0.5972 \\ 0.3981 & 0.4028 \end{bmatrix} \begin{bmatrix} 0.6667 \\ 0.3333 \end{bmatrix}$$

It appears that our system is approaching an equilibrium state, describing the long-term behavior of the system. This fixed vector the system converges to is called its steady-state vector. A transition matrix T of a Markov Chain is called regular if all the entries in some power of T are positive. One can prove that if a Markov Chain has a regular transition matrix, then it also has a steady-state vector. There are two ways to obtain the steady-state vector. The first is through numerical approximation like we have started to do previously, the other is by solving the equation $T \cdot \vec{V} = \vec{V}$ with the sum of the elements of \vec{V} being equal to 1.

Our weather prediction transition matrix is regular, therefore a steady-state vector exists. The exact steady-state vector can be computed as follows:

$$\begin{bmatrix} \frac{2}{3} & \frac{1}{2} \\ \frac{1}{3} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{align*}
\frac{2}{3}x + \frac{1}{2}y &= x \\
\frac{1}{3}x + \frac{1}{2}y &= y \\
\frac{1}{3}x &= \frac{1}{2}y \\
\frac{1}{3}x &= y \\
\frac{1}{3}x &= 1 - x \\
\frac{2}{3}x &= 1 \\
x &= \frac{3}{5} \\
y &= 1 - \frac{2}{5} = \frac{3}{5}
\end{align*}$$
Steady-state vector = \[
\begin{bmatrix}
3 \\
5 \\
2
\end{bmatrix}
\]

In other words, our long term climate prediction is that about 60% of the time we’ll have dry days and about 40% of the time rainy days.

Problem statement

Write in C++ or Python, a Markov Chain prediction program which asks the user to enter (I) a positive floating point number no larger than 0.1 indicating the desired precision of the climate prediction, and (II) a string consisting solely of D’s and R’s to specify the observation record, with the final observation specifying the current (initial state) weather, and with the constraint that all four possible transitions have to occur at least once; if the user tries to enter a level of precision violating the stated range, then the program should tell the user what the violation was and have them reenter the precision until they enter a valid one; if the user tries to enter an observation record which violates the constraint, then the program should tell the user what the violation was and have them reenter the record until they have entered a valid one. Once a valid precision level and a valid record have been entered, the program should compute the weather prediction for the following 7 days and output that to the user, as well as compute the climate prediction with the desired precision. One way to estimate the latter is to raise the transition matrix to increasingly larger powers until none of the matrix elements differ by more than the desired precision from their value in the previous power (i.e., they may be considered to have converged within the desired precision).

Resubmissions, penalties, documents, and bonuses

If you submit before the deadline, then you may resubmit up to a reasonable number of times till the deadline but not thereafter, your last on time submission will be graded. If you do not submit before the deadline, then your first late submission will be graded.

The penalty for late submission is a 5% deduction for the first 24 hour period and a 10% deduction for every additional 24 hour period. So 1 hour late and 23 hours late both result in a 5% deduction. 25 hours late results in a 15% deduction, etc. Not following submission guidelines can be penalized for up to 5%, which may be in addition to regular deduction due to not following the assignment guidelines.

Some assignments may offer bonus points for extra work, but note that the max grade for the average of all assignments is capped at 100%.

Deliverables & Due Date

The deliverables of this assignment are:

1. your source code with at the top of each file your name and the string “COMP SCI 1200 Section B FS2015 Assignment 6” (including any necessary support files such as makefiles, project files, etc.) and

2. a readme file headed by the string “COMP SCI 1200 Section B FS2015 Assignment 6” to explain how to compile/execute your submission on a Windows or Linux computer in CLC 212/213 of the Computer Science Building.

Submit all files in a .zip, .7z, or gzipped tar ball format. The due date for this assignment is 11:59 PM on Friday December 4, 2015.
Grading

The maximum number of regular points you can get is 50. The point distribution is as follows:

<table>
<thead>
<tr>
<th>Category</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic (e.g., does it provide the correct output for a given input)</td>
<td>30</td>
</tr>
<tr>
<td>Good programming practices including code reliability/efficiency/readability and commenting</td>
<td>15</td>
</tr>
<tr>
<td>Output to user (e.g., clearly state solution found, provide helpful error messages for invalid user input)</td>
<td>5</td>
</tr>
</tbody>
</table>