DATA SHEET #1 for single dye visual colorimetry data

Red (or Blue) Dye Standard Concentration (ppm) 9.80 ppm

Red (or Blue) Unknown # 65

<table>
<thead>
<tr>
<th>Strip</th>
<th>Well#</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;I&quot;</td>
<td></td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>&quot;II&quot;</td>
<td></td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

Strip "II" Calculated dye concentration data

Well # Diluted Dye Conc. (ppm) = (ppm Std.) (#Drops of Std.) / (Total Drops in Well)

1
2
3
4
5
6
7
8

"III" Red (or Blue) Unknown Best Color Match with Well #_____ of Strip "II"

Concentration of Dye in Unknown _________

Simulation of Single Dye (8 drops far left to 0 drops far right.)

Determine which cell above that the unknown below matches.
DATA SHEET #2  for purple dye mixture visual colorimetry data

Purple Unknown # __55_____

Strip   Well#  1  2  3  4  5  6  7  8  9

# of Drops in Well

"IV"  Red Standard  8  7  6  5  4  3  2  1  0
Blue Standard  0  1  2  3  4  5  6  7  8

Strip "IV" Calculated red dye fraction data

Well #  Fraction of Red Dye in Well (= Drops of Red Dye / Total Drops in Well)
1      ________
2      ________
3      ________
4      ________
5      ________
6      ________
7      ________
8      ________
9      ________

Purple Unknown Having the Best Color Match with Well # _______ of Strip "IV"

Fraction of Red Dye in Purple Unknown _______

Simulation of Purple Dye (8 drops Red far left to 8 drops Blue far right.)

Determine which cell above that the unknown below matches.
DATA SHEET #3 for Instrumental Spectrophotometry Data

NOTE: You need to record transmittance values, but you will be plotting absorbance values.

Transmittance:

<table>
<thead>
<tr>
<th></th>
<th>Transmittance at Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Red Std.</td>
<td>93.8</td>
</tr>
<tr>
<td>Blue Std.</td>
<td>80.4</td>
</tr>
<tr>
<td>Red #65 Unknown</td>
<td>98.8</td>
</tr>
<tr>
<td>Purple #55 Unk</td>
<td>86.2</td>
</tr>
</tbody>
</table>

Absorbance:

Absorbance = log(100/Transmittance)

<table>
<thead>
<tr>
<th></th>
<th>Absorbance at Wavelength (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>400</td>
</tr>
<tr>
<td>Red Std.</td>
<td></td>
</tr>
<tr>
<td>Blue Std.</td>
<td></td>
</tr>
<tr>
<td>Red (or Blue) Unknown</td>
<td></td>
</tr>
<tr>
<td>Purple Unknown</td>
<td></td>
</tr>
</tbody>
</table>

From Graph:

Red Dye Max. Absorbance = _______ at ______nm (λ Max) Red Std. Conc.=________ppm

Blue Dye Max. Absorbance=_______ at ______nm (λ Max) Blue Std. Conc.=________ppm

<table>
<thead>
<tr>
<th></th>
<th>Absorbance of Unknown (at λ Max.)</th>
<th>Absorbance of Standard (at λ Max.)</th>
<th>Abs Ratio Unk/Std (at λ Max.)</th>
<th>Dye Cone. in Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Red / Blue) Unknown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Red in Purple</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blue in Purple</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Colorimetry & Spectrophotometry – Post Lab Questions

1. If fingerprints are left on the cuvette, how does this affect the % transmittance? the absorbance?

2. The standard solutions of red & blue dye for this experiment were prepared with distilled water. There was another bottle of red dye solution that had been prepared with ethanol. If the latter solution were used, what would you need to use for a blank?

3. For your Red (or Blue) Unknown, compare your colorimetry concentration results to your spectrophotometry concentration results. To do this, calculate a Percent Error using the colorimetry results as your experimental results and your spectrophotometry as your theoretical results. Please show calculation.

4. For your Purple Unknown, compare your colorimetry concentration results to your spectrophotometry concentration results for the “Red in Purple”. To do this, multiply your colorimetry results times the concentration of the red dye. Then, calculate a Percent Error using the colorimetry results as your experimental results and your spectrophotometry as your theoretical results.

5. Which method do you think was more effective at determining the concentration? Explain why you feel this way. (Note: As this is your opinion, either answer will be considered correct as long as it is supported with a reasonable explanation.)
6. Using the well strips below, the student put the following number of drops in the wells. In strip I, 1-8 drops of red dye standard solution (6.30 ppm) were added as shown in the diagram. In strip II, additional drops of water were added in order to have the same total volume of 8 drops for each well.

Given: The student found that the unknown solution of red dye matched well #5 on Strip II.

a. What is changing in the first well strip – concentration or pathlength?

b. What is changing in the second well strip – concentration or pathlength?

c. Looking from the top how does the intensity compare for Strip 1 to Strip 2?

more intense – the same – less intense

d. Using $C_1V_1 = C_2V_2$, what is the approximate concentration in ppm for the unknown?

7. Using Excel or a similar program, make 4 Plots of Absorbance Data (scatter plots) using your data ($x =$ wavelength, $y =$ Absorbance) and attach to the post lab.

For,

Graph 1: $y =$ Absorbance Red Standard

Graph 2: $y =$ Absorbance Blue Standard

Graph 3: $y =$ Red (or Blue) Unknown – will appear similar to #1 or #2 depending on whether you have a blue or red unknown, respectively.

Graph 4: $y =$ Purple Unknown

#2 & #3 if Blue Unknown

#1 & #3 if Red Unknown

#4