Lecture 20: Static Equilibrium

- Conditions for static equilibrium
- Examples
Conditions for static equilibrium

No linear acceleration:
\[\sum \vec{F} = 0 \]

No angular acceleration:
\[\sum \vec{\tau} = 0 \]
Two-dimensional problems

All forces act in one plane, the xy-plane
→ all torques perpendicular to this plane, in z-direction

\[
\sum F_x = 0 \\
\sum F_y = 0 \\
\sum \tau_z = 0
\]
Choice of reference point for torques

Object does not rotate \rightarrow may choose any point about which to calculate torques.

Reference point along the line of action of a force: moment arm is zero \rightarrow no torque

Convenient choice of reference point:
• point where several forces act
• point where unknown force acts
Easy Example:

Father and son on see-saw

Father (mass m_1) and son (mass m_2) are on a see-saw, which is a beam of mass M and length L that is pivoted in the middle. The son sits at one end. How far from the middle does the father have to sit for the see-saw to be in equilibrium?
Example

A massless beam of length \(L \) has its lower end pivoted at \(P \) on the floor, making an angle \(\theta \) with the floor. A horizontal cable is attached from its upper end \(E \) to a point \(A \) on a nearby wall. A rope is attached at one-fourth of the way down from the beam’s upper end, and hangs vertically downward. A disgustedly cheery purple dinosaur of mass \(M \) is attached motionless to the end of the rope.

Derive an expression for the tension in the horizontal cable \(AE \).

What are the \(x \) and \(y \) components of the force exerted by the pivot on the lower end of the beam?
A uniform beam of length L and weight W is set upright on a rough floor which has a coefficient of static friction μ with the beam. A constant, horizontal pulling force is applied to the beam at some height above the ground. A rope which makes an angle θ with the beam is attached to the top end of the beam. The tension in the rope is T. The lower end of the beam is just about to slide.

Derive an expression for the height h above the ground at which the pulling force is applied, in terms of relevant system parameters.