Lecture 23: Simple Harmonic Motion

- Motion of a mass at the end of a spring
- Differential equation for simple harmonic oscillation
- Amplitude, period, frequency and angular frequency
- Energetics
Mass at the end of a spring

Mass m connected to a spring with spring constant k on a frictionless surface

$$F_x = -kx$$

Linear restoring spring force
Spring force: \(F_S x = -kx \)

- \(x = l - l_{eq} \)
 - stretch or compression
 - \(k \) force constant

\(F_x \) is negative if \(x \) is positive
 - (stretched spring)

\(F_x \) is positive if \(x \) is negative
 - (compressed spring)
Newton’s 2nd Law: \(\sum F_x = m a_x \)

\[-kx = m \frac{d^2 x}{d t^2} \]

\[-\frac{k}{m} x = \frac{d^2 x}{d t^2} \]

\[
\frac{d^2 x}{d t^2} = -\omega^2 x \quad *
\]

\[
\omega = \sqrt{\frac{k}{m}}
\]

Differential equation of a Simple Harmonic Oscillator

We can always write it like this because m and k are positive.
Solution

\[\frac{d^2x}{dt^2} = -\omega^2 x \]

Equation for SHO

General solution: \[x = A \cos(\omega t + \varphi) \]

\[\frac{dx}{dt} = -A \omega \sin(\omega t + \varphi) \]
\[\frac{d^2x}{dt^2} = -A \omega^2 \cos(\omega t + \varphi) = -\omega^2 x \]

\(A \) and \(\varphi \): two “constants of integration” from solution of a second-order differential equation. Determined by the initial conditions.
Amplitude

\[x = A \cos(\omega t + \varphi) \]

Range of cosine function: -1…+1
\[\Rightarrow -A \leq x(t) \leq +A \]

\[A = \text{Amplitude of the oscillation} \]
If $\varphi=0$:

$$x = A \cos(\omega t)$$

$$x(t = 0) = x_0 = A$$

To describe motion with different starting points:
Add phase constant to shift the cosine function
\[x = A \cos(\omega t + \varphi) \]

\[x_0 = -A : \] shift by \(\pi \)

\[x_0 = 0 : \] shift by \(\frac{\pi}{2} \)
Initial conditions

\[x_0 = x(t = 0) \]
\[v_{x0} = v_x(t = 0) \]

\[x_0 = A \cos(0 + \phi) = A \cos(\phi) \]
\[v_{x0} = -A \omega \sin(0 + \phi) = -A \omega \sin(\phi) \]

→ two equations for \(A \) and \(\phi \)
Position and velocity

\[x = A \cos(\omega t + \varphi) \]

\[v_x = \frac{dx}{dt} = -A\omega \sin(\omega t + \varphi) \]

At time \(t_m \): \(x = x_{max} = A \quad \cos(\omega t_m + \varphi) = 1 \)

\((\omega t_m + \varphi) = 0 \) or \(\pi \)

\(\sin(\omega t_m + \varphi) = 0 \quad \Rightarrow \quad v_x(t_m) = 0 \)

Mass stops and reverses direction when it reaches maximum displacement (turning point)
Simulation

http://www.walter-fendt.de/ph14e/springpendulum.htm
Period and angular frequency

\[x = A \cos(\omega t + \varphi) \]

Time \(T \) for one complete cycle: period

(\(\omega t + \varphi \)) changes by \(2\pi \) in time \(T \)

\[\omega T = 2\pi \implies \omega = \frac{2\pi}{T} = 2\pi f \]
Effect of mass and amplitude on period

\[\omega T = 2\pi \quad \Rightarrow \quad T = \frac{2\pi}{\omega} \]

\[\omega = \sqrt{\frac{k}{m}} \quad \Rightarrow \quad T = \frac{2\pi}{\sqrt{\frac{k}{m}}} \]

\[T = 2\pi \sqrt{\frac{m}{k}} \]

Amplitude \(A \) does not appear – no effect on period

Demo: Vertical springs showing effect of \(m \) and \(A \)
Potential energy of spring force: \(U = \frac{1}{2} k x^2 \)

At \(x = \pm A \):

\[
U = \frac{1}{2} k A^2
\]

\(K = 0 \)

\(E = \frac{1}{2} k A^2 \)

At \(x = 0 \):

\(U = 0 \)

\(K = K_{\text{max}} = E \)
Kinetic and potential energy in SHO

\[K = \frac{1}{2} m v^2 = \frac{1}{2} m [A \omega \sin(\omega t + \phi)]^2 \]

\[K_{\text{max}} = \frac{1}{2} m v_{\text{max}}^2 = \frac{1}{2} m (\omega A)^2 \]

\[U = \frac{1}{2} k x^2 = \frac{1}{2} k [A \cos(\omega t + \phi)]^2 \]

\[U_{\text{max}} = \frac{1}{2} k x_{\text{max}}^2 = \frac{1}{2} k A^2 \]

\[E = K_{\text{max}} \sin^2(\omega t + \phi) + U_{\text{max}} \cos^2(\omega t + \phi) \]

http://www.walter-fendt.de/ph14e/springpendulum.htm
Example

A block of mass M is attached to a spring and executes simple harmonic motion of amplitude A. At what displacement(s) x from equilibrium does its kinetic energy equal twice its potential energy?