Physics 21 Special Homework #4 (3 problems)

1. You are a scientist exploring a mysterious planet. You have performed measurements and know the following things:
 - The planet has radius d.
 - It is orbiting his star in a circular orbit of radius b.
 - It takes time t to revolve around itself.
 - It takes time T to complete one orbit around the star.
 - The free-fall acceleration on the surface of the planet is a.

Derive expressions for the mass M_P of the planet and for the mass M_S of its star.

2. A projectile of mass m is shot directly away from the surface of a planet of mass M and radius R at $\frac{1}{2}$ the escape speed from the planet. Derive an expression for the maximum distance from the center of the planet the projectile reaches.
3. The kings of planet A (mass $4M$, radius $2R$) and planet B (mass M, radius $3R$) want to meet for negotiations. The planets are a distance $10R$ from one another, center to center. For absolute fairness, the kings (who possess no physics knowledge) decide that the meeting place P is to be exactly halfway between the planets. A space capsule of mass m is launched from point \times on the surface of planet A by means of a giant cannon, which gives it a launch speed V_L. It travels directly along the line that connects the centers of both planets. Ignore the orbital motion of the planets.

a) Derive an expression for the speed V with which the capsule arrives at the meeting place P, in terms of relevant system parameters.

b) Derive an expression for the net force (magnitude and direction) experienced by the capsule when it is at point P.

c) At what distance from planet A is the net gravitational force zero?