THE EULER-MINDING ANALOGON AND OTHER IDENTITIES FOR CONTINUED FRACTIONS IN BANACH SPACES

ANDREAS SCHELLING

Carinthia Tech Institute, Villacher Strasse 1, A
–9800 Spittal/Drau, Austria $\ensuremath{\textit{E-mail:}}$ a.schelling@cti.ac.at

ABSTRACT. The Euler–Minding formulae and other identities for the numerators and denominators of the approximants of noncommutative continued fractions in Banach spaces are proved.

AMS (MOS) Subject Classification. 11J70, 39A05.

1. INTRODUCTION

We investigate expressions of the form

$$(1.1) B_0 + A_1(B_1 + A_2(\ldots)^{-1})^{-1},$$

where A_n , B_n are elements of a complex Banach algebra M, called noncommutative continued fraction (ncf). Wynn [4] developed a number of identities for such expressions. One of his results he announced as Euler-Minding analogon, in fact the scalar result is due to Stern [1].

In this paper we generalize the genuine Euler–Minding theorem for ncf and develop formulae for generating a ncf to given sequences of nth numerators and denominators. Furtheron we compute transformations, which are effictive in convergence theory of ncf.

2. DEFINITIONS AND NOTATIONS

Througout this paper M denotes a noncommutative Banach algebra with identity E and M^* the set of its invertible elements.

Definition 2.1. For $k \in \mathbb{N}$ let $S_k : N_k \to M$, $N_k \subseteq M$, $S_k(X) := A_k(B_k + X)^{-1}$, where $A_k, B_k \in M$. If $T_n := S_1 \circ \ldots \circ S_n(0)$ exists, we call $R_n := B_0 + T_n$ the *n*th approximant of (1.1).

If R_n exists, it can be shown [4] that $R_n = P_n Q_n^{-1}$ (especially $Q_n \in M^*$), where P_n and Q_n are computed by the recurrence relations

(2.1)
$$P_{-1} = E, \quad P_0 = B_0, \quad P_n = P_{n-1}B_n + P_{n-2}A_n \quad \text{for} \quad n \ge 1,$$

$$Q_{-1} = 0, \quad Q_0 = E, \quad Q_n = Q_{n-1}B_n + Q_{n-2}A_n \quad \text{for} \quad n \ge 1.$$

 P_n and Q_n are called the nth numerator and denominator of (1.1), respectively.

Remark 2.2. To ensure the existence of R_n , $Q_n \in M^*$ is not sufficient, see [2]. Since this has no consequences on our investigations, we renounce to go into detail.

3. THE MAIN RESULTS

Wynn stated in [4] the identity

$$(3.1) P_n Q_n^{-1} = B_0 + \sum_{k=0}^{n-1} (-1)^k A_1 B_1^{-1} Q_0 A_2 Q_2^{-1} Q_1 A_3 Q_3^{-1} \cdots Q_{k-1} A_{k+1} Q_{k+1}^{-1}$$

and announced it as the Euler–Minding formulae for ncf. In fact this is the generalization of Stern's result for ordinary continued fractions [1]. In the scalar case the Euler–Minding formulae enable us to compute both, the *n*th numerators and denominator of a continued fraction, without the recurrence relations (2.1). An analogous result for ncf is the following:

Theorem 3.1. For the nth numerator P_n and denominator Q_n of (1.1) we have

$$(3.2) P_{n} = B_{0}B_{1} \cdots B_{n} + \sum_{k=1}^{n} B_{0} \cdots B_{k-2}A_{k}B_{k+1} \cdots B_{n}$$

$$+ \sum_{1 \leq k < i \leq n-1} B_{0} \cdots B_{k-2}A_{k}B_{k+1} \cdots B_{i-1}A_{i+1}B_{i+2} \cdots B_{n}$$

$$+ \sum_{1 \leq k < i < j \leq n-1} B_{0} \cdots B_{k-2}A_{k}B_{k+1} \cdots B_{i-1}A_{i+1}B_{i+2} \cdots B_{j-1}A_{j+1}B_{j+2} \cdots B_{n} + \dots$$

and

$$(3.3) \ Q_n = B_1 \cdots B_n + \sum_{k=2}^n B_1 \cdots B_{k-2} A_k B_{k+1} \cdots B_n$$

$$+ \sum_{2 \le k < i \le n-1} B_1 \cdots B_{k-2} A_k B_{k+1} \cdots B_{i-1} A_{i+1} B_{i+2} \cdots B_n$$

$$+ \sum_{2 \le k < i < j \le n-1} B_1 \cdots B_{k-2} A_k B_{k+1} \cdots B_{i-1} A_{i+1} B_{i+2} \cdots B_{j-1} A_{j+1} B_{j+2} \cdots B_n + \dots$$

where $B_m \cdots B_d = E$, whenever m > d.

Remark 3.2. We have $[\frac{n+1}{2}]$ sums in (3.2) and (3.3).

Proof of 3.1. For the moment let $B_n \in M^*$, $n \in \mathbb{N}$. Define a sequence (U_n) as follows:

$$U_0 := B_0, \ U_1 := B_0 B_1 + A_1$$
 and $U_n := U_{n-1} (B_n + B_{n-1}^{-1} A_n)$ for $n \ge 2$.

Writing out U_n as an explicite sum, we split U_n up in two parts U'_n and U''_n , where U''_n consists of all terms which contain at least one of the factors B_k^{-1} , hence $U_n = U'_n + U''_n$. We obtain $U_0 = U'_0 = P_0$ and $U_1 = U'_1 = P_1$ immediately by definition and

$$U_2 = U_1(B_2 + B_1^{-1}A_2) = U_1B_2 + B_0A_2 + A_1B_1^{-1}A_2 = U_1'B_2 + U_0'A_2 + U_2''$$

hence $U'_2 = U'_1B_2 + U'_0A_2 = P_2$. Further

$$U_{n} = U_{n-1}B_{n} + U_{n-1}B_{n-1}^{-1}A_{n} = U_{n-1}B_{n} + (U_{n-2}B_{n-1} + U_{n-2}B_{n-2}^{-1}A_{n-1})B_{n-1}^{-1}A_{n}$$

$$= (U'_{n-1} + U''_{n-1})B_{n} + (U'_{n-2} + U''_{n-2})A_{n} + U_{n-2}B_{n-2}^{-1}A_{n-1}B_{n-1}^{-1}A_{n} = U'_{n} + U''_{n}.$$

For B_{n-1} does not appear in U_{n-2} , the term $U_{n-2}B_{n-2}^{-1}A_{n-1}B_{n-1}^{-1}$ is part of U''_n , thus $U'_n = U'_{n-1}B_n + U'_{n-2}A_n$, and we obtain by (2.1) that $P_n = U'_n$ for all $n \geq 0$. To compute U'_n we establish that $U_n = (B_0B_1 + A_1)(B_2 + B_1^{-1}A_2)\cdots(B_n + B_{n-1}^{-1}A_n)$ yields a part of U'_n if

- (i) in two successive factors $(B_{k-1} + B_{k-2}^{-1} A_{k-1})$ and $(B_k + B_{k-1}^{-1} A_k)$ we multiply B_{k-1} by $B_{k-1}^{-1} A_k$; or
- (ii) it is $B_0B_1 \cdots B_n$ or $A_1B_2B_3 \cdots B_n$.

Combining this we obtain (3.2). Then (3.3) follows immediately, for Q_n may be developed from P_{n-1} if we add 1 to the indices of all its elements. Finally we do not need any B_k^{-1} for computation of (3.2) and (3.3), so the formulae are granted for $B_k \in M$.

For investigations of continued fractions, the continued fraction transformations play an important part. Equivalence transformation see [2, 3], contraction and extension see [3, 4] for ncf has already been studied. Another important transformation is the following. Let

$$(3.4) E + A_1(E + A_2(\ldots)^{-1})^{-1}$$

be a ncf with its nth approximants R_n . We now want to create a ncf with the same approximants but in permuted succession, for example $R_1, R_0, R_3, R_2, \ldots$ This transformations are very interesting in convergence theory of ncf, because the transformed ncf converges exactly if (3.4) converges.

Theorem 3.3. Assume (3.4) with nth numerators P_n and denominators Q_n , then the sequence of numerators respectively denominators of

$$(3.5) B_0' + A_1'(B_1' + A_2'(\ldots)^{-1})^{-1}$$

is:

(a)
$$P_1$$
, P_0 , P_3 , $P_2(E+A_3)$, P_5 , $P_4(E+A_5)$, ..., respectively, Q_1 , Q_0 , Q_3 , $Q_2(E+A_3)$, Q_5 , $Q_4(E+A_5)$, ... if $(E+A_{2n+1}) \in M^*$ for all $n \in \mathbb{N}$, and we put

$$B'_0 = E + A_1$$
, $B'_2 = A_2$, $B'_{2n} = (E + A_{2n-1})^{-1} A_{2n}$ for $n \ge 2$, $B'_{2n-1} = E$ for $n \ge 1$ and $A'_1 = A_1$, $A'_3 = A_2 A_3$,

$$A'_{2n+1} = (E + A_{2n-1})^{-1} A_{2n} A_{2n+1}$$
 for $n \ge 2$, $A'_{2n} = E + A_{2n+1}$ for $n \ge 1$,

(b) P_0 , P_2 , P_1 , P_4 , $P_3(E + A_4)$, P_6 , $P_5(E + A_6)$,..., respectively Q_0 , Q_2 , Q_1 , Q_4 , $Q_3(E + A_4)$, Q_6 , $Q_5(E + A_6)$,..., if $(E + A_{2n}) \in M^*$ for all $n \in \mathbb{N}$, and we put

$$B'_1 = E + A_2$$
, $B'_3 = A_3$, $B'_{2n+1} = (E + A_{2n})^{-1} A_{2n+1}$ for $n \ge 2$, $B'_{2n} = E$ for $n \ge 0$ and

$$A'_1 = A_1, \ A'_{2n+1} = E + A_{2n+2} \text{ for } n \ge 1,$$

 $A'_2 = -A_2, \ A'_4 = A_3 A_4, \ A'_{2n} = (E + A_{2n-2})^{-1} A_{2n-1} A_{2n} \text{ for } n \ge 3.$

Proof. (a) Denote P'_n and Q'_n as the numerators and denominators of (3.5). Then $P'_0 = P_1$, $P'_1 = P_0$, and by the recurrence relations (2.1) we obtain immediately $P'_2 = P_3$ and $P'_3 = P_2(E + A_2)$. Let $P'_{2n} = P_{2n+1}$ and $P'_{2n+1} = P_{2n}(E + A_{2n+1})$. Then (2.1) implies

$$P'_{2n+2} = P'_{2n+1}B'_{2n+2} + P'_{2n}A'_{2n+2}$$

$$= P_{2n}(E + A_{2n+1})(E + A_{2n+1})^{-1}A_{2n+2} + P_{2n+1}(E + A_{2n+2})$$

$$= P_{2n+1} + P_{2n}A_{2n+2} + P_{2n+1}A_{2n+2} = P_{2n+3}$$

and

$$P'_{2n+3} = P'_{2n+2}B'_{2n+3} + P'_{2n+1}A'_{2n+3}$$

$$= P_{2n+3} + P_{2n}(E + A_{2n+1})(E + A_{2n+1})^{-1}A_{2n+2}A_{2n+3}$$

$$= P_{2n+2} + P_{2n+1}A_{2n+3} + P_{2n}A_{2n+2}A_{2n+3} = P_{2n+2}(E + A_{2n+3}).$$

Induction also implies the assertion for Q'_n . (b) follows analogously as (a).

Finally we generate a ncf, whose numerators and denominators are given sequences.

Theorem 3.4. Let $(X_n)_{n=0}^{\infty} \subset M$, $(Y_n)_{n=0}^{\infty} \subset M^*$ and $Y_0 = E$. If $(X_nY_n^{-1} - X_{n-1}Y_{n-1}^{-1}) \in M^*$ for all $n \in \mathbb{N}$, then there exists a unique ncf $B_0 + A_1(B_1 + A_2(\ldots)^{-1})^{-1}$ with nth numerators X_n and denominators Y_n for all $n \geq 0$. For its partial numerators respectively denominators we obtain $A_1 = X_1 - X_0Y_1$,

$$A_n = Y_{n-2}^{-1} (X_{n-1} Y_{n-1}^{-1} - X_{n-2} Y_{n-2}^{-1})^{-1} (X_{n-1} Y_{n-1}^{-1} - X_n Y_n^{-1}) Y_n, \text{ for all } n \ge 2,$$
respectively $B_0 = X_0$, $B_1 = Y_1$,

$$B_n = Y_{n-1}^{-1}(X_{n-2}Y_{n-2}^{-1} - X_{n-1}Y_{n-1}^{-1})^{-1}(X_{n-2}Y_{n-2}^{-1} - X_nY_n^{-1})Y_n \text{ for all } n \ge 2.$$

Proof. Obviously we have $P_0 = X_0$, $P_1 = X_1$ and $Q_0 = Y_0$, $Q_1 = Y_1$. For $n \ge 2$ we construct A_n and B_n as follows. The recurrence relations (2.1) imply

(3.6)
$$X_n = X_{n-1}B_n + X_{n-2}A_n$$
 and $Y_n = Y_{n-1}B_n + Y_{n-2}A_n$.

Multiply the left equation in (3.6) by X_{n-1}^{-1} and the right equation in (3.6) by Y_{n-1}^{-1} to obtain by subtraction

$$Y_{n-1}^{-1}Y_n - X_{n-1}^{-1}X_n = (Y_{n-1}^{-1}Y_{n-2} - X_{n-1}^{-1}X_{n-2})A_n$$

and hence

$$Y_{n-2}^{-1}(X_{n-1}Y_{n-1}^{-1}-X_{n-2}Y_{n-2}^{-1})^{-1}(X_{n-1}Y_{n-1}^{-1}-X_nY_n^{-1})Y_n=A_n,$$

where uniqueness follows from regularity of all factors on the left side of the equation. Analogously B_n is generated by subtraction of the left equation in (3.6) and the right equation in (3.6) multiplied by X_{n-2}^{-1} and Y_{n-2}^{-1} , respectively. Finally the above construction leads to $P_n = X_n$ and $Q_n = Y_n$ for all $n \ge 0$.

Remark 3.5. From Theorem 3.4 computation of ncf, whose nth denominators are identically E and nth numerators are the nth partial sum of the series $\sum_{k=0}^{\infty} C_k$, the nth partial product of an infinite product is possible without difficulties, under the hypothesis that the respective expressions are invertible elements.

As a consequence of Theorem 3.4 we obtain the following result.

Corollary 3.6. Let $E + A_1(B_1 + A_2(...)^{-1})^{-1}$ be a ncf with $A_n \in M^*$ for all $n \in \mathbb{N}$, nth numerators $P_n \in M^*$ and denominators $Q_n \in M^*$ for all $n \geq 0$. Then

$$E - A_1(B_1 + A_1 + A_2(B_2 + A_3(\ldots)^{-1})^{-1})^{-1}$$

has the nth numerators Q_n and denominators P_n .

REFERENCES

- [1] O. Perron. Die Lehre von den Kettenbrüchen. Dritte, verbesserte und erweiterte Aufl. Bd. II. Analytisch-funktionentheoretische Kettenbrüche. B. G. Teubner Verlagsgesellschaft, Stuttgart, 1957.
- [2] P. Pfluger. Matrizenkettenbrüche. PhD thesis, ETH Zürich, 1966.
- [3] A. Schelling. Matrizenkettenbrüche. PhD thesis, Universität Ulm, 1993.
- [4] P. Wynn. Continued fractions whose coefficients obey a noncommutative law of multiplication. *Arch. Rational Mech. Anal.*, 12:273–312, 1963.