- 43. Let $u = \begin{bmatrix} 1 & -1 & 2 \end{bmatrix}^T$, $v = \begin{bmatrix} -2 & -5 & 3 \end{bmatrix}^T$, and $w = \begin{bmatrix} -3 & 1 & 2 \end{bmatrix}^T$.
 - (a) Determine which pairs of the vectors u, v, and w are orthogonal.
 - (b) Find the orthogonal projection of v onto the line through the origin with direction u.
- 44. Find the lengths, the inner products, the distances and the angles between

(a)
$$\begin{bmatrix} 2\\1 \end{bmatrix}$$
, $\begin{bmatrix} 2\\5 \end{bmatrix}$ (also draw a picture); (b) $\begin{bmatrix} 1\\-2\\2 \end{bmatrix}$, $v = \begin{bmatrix} 6\\2\\3 \end{bmatrix}$; (c) $\begin{bmatrix} 1\\4\\0\\2 \end{bmatrix}$, $\begin{bmatrix} 2\\-2\\1\\3 \end{bmatrix}$.

45. Find all vectors orthogonal to $\mathcal{R}(A)$, and all vectors orthogonal to $\mathcal{N}(A)$, if

(a)
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}$$
; (b) $A = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 4 \end{bmatrix}$.

46. Find all vectors orthogonal to

(a)
$$[1 \ 1 \ 1]^T$$
 and $[1 \ -1 \ 0]^T$; (b) $[1 \ 1 \ 2]^T$ and $[1 \ 2 \ 3]^T$.

- 47. Prove the following statements where $x, y, z \in \mathbb{R}^n$. Draw a picture for n = 2.
 - (a) $||x|| \ge 0$ and ||x|| = 0 iff x = 0.
 - (b) $\|\lambda x\| = |\lambda| \|x\|$ for all $\lambda \in \mathbb{R}$.
 - (c) $(x y) \perp (x + y)$ iff ||x|| = ||y||.
 - (d) $(x-z) \perp (y-z)$ iff $||x-z||^2 + ||y-z||^2 = ||x-y||^2$.
 - (e) $||x + y||^2 + ||x y||^2 = 2(||x||^2 + ||y||^2).$
- 48. Let V be a subspace of \mathbb{R}^n . Prove that V^{\perp} is also a subspace of \mathbb{R}^n .
- 49. Let V and W be subspaces of \mathbb{R}^n . Prove that $V \perp W$ implies that $V \cap W = \{0\}$.
- 50. Let $P = \{ [a \quad b \quad c]^T \in \mathbb{R}^3 : a + 2b c = 6 \}.$
 - (a) Give three points that are in P and three points that are not in P. Is P a subspace of \mathbb{R}^3 ?
 - (b) Find the subspace Q of \mathbb{R}^3 that has dimension 2 and no point in common with P. Give three points that are in Q and three points that are not in Q.
 - (c) Find Q^{\perp} . What is the dimension of Q^{\perp} ? Give three points that are in Q^{\perp} and three points that are not in Q^{\perp} .
 - (d) Find, if possible, matrices A and B such that $\mathcal{N}(A) = Q^{\perp}$ and $\mathcal{R}(B) = Q^{\perp}$.