- 1. Determine an integrating factor for $xy' 3x\sin(x) + 2y x^2\cos(x) = 0$ and find some solution of this equation. Give this solution in explicit form.
- 2. We invest \$50000 in a bank where interest is compounded monthly at a rate of 6% a year. At the end of each month we withdraw \$100. Let y_k be the amount of money on the account at the beginning of the kth month.
 - (a) Find y_1 and y_2 .
 - (b) Find a difference equation for y_k .
 - (c) Solve the resulting initial value problem.
 - (d) Determine the amount of money in the account after ten years.
 - (e) Will the money ever be gone? If so, when?
- 3. Solve the initial value problem $y'' \frac{5}{2}y' + y = 0$, y(0) = 0, y'(0) = 1.
- 4. Consider the equation $y'' y'\cos(t) y\cosh(t) = 0$ (do not attempt to solve this equation). Let y_1 and y_2 be two solutions of this equation such that $y_1(0) = 0$, $y'_1(0) = 1$, and $y_2(0) = -2$.
 - (a) Find the Wronskian of y_1 and y_2 evaluated at 0.
 - (b) Find the Wronskian of y_1 and y_2 for any time t.
 - (c) If $y_1(\frac{\pi}{2}) = 2$ and $y_1'(\frac{\pi}{2}) = 0$, determine the value of $y_2'(\frac{\pi}{2})$.
- 5. Given are the first two members of a sequence $y_0 = 0$ and $y_1 = 1$. Using two consecutive members, the next member of the sequence is constructed in the following way: You take the second one of these two numbers, multiply it by 5, divide it by 2, and then subtract the first one.
 - (a) Find y_2 , y_3 , and y_4 (give the decimal respresentations of these numbers).
 - (b) Find a difference equation that is satisfied by the members of this sequence.
 - (c) Solve the resulting initial value problem.
 - (d) Use the obtained formula to calculate y_5 .
 - (e) What is the limit of $\frac{y_{n+1}}{y_n}$ as n tends to ∞ ?