- 16. For three invertible matrices of your choice from Number 15, do the following: Calculate the inverse and its eigenvalues. Guess a connection between the eigenvalues of an invertible A and the eigenvalues of A^{-1} and prove it.
- 17. For three matrices of your choice from Number 15, do the following: Write down the characteristic polynomial. Then plug A instead of λ , i.e., for λ^2 use A^2 and so on. Compute the result in all three cases. Guess what the result in general is and try to prove it.
- 18. For three matrices of your choice from Number 15, do the following: Find the matrix B given by $B = 2A^2 + A 3I$ and calculate the eigenvalues of B. Guess what the result in general is and prove it.
- 19. Show that eigenvectors corresponding to different eigenvalues are linearly independent.
- 20. Diagonalize the following matrices, if possible. If not possible, explain why it is not possible.

(a)
$$\begin{pmatrix} -4 & -3 \\ 3 & 6 \end{pmatrix}$$
;

(b)
$$\left(\begin{array}{cc} .85 & .03 \\ .15 & .97 \end{array}\right);$$

(c)
$$\begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}$$
;

(d)
$$\begin{pmatrix} 0 & -1 \\ 0 & 1 \end{pmatrix}$$
.

- 21. Find the kth power of each of the matrices from the previous problem.
- 22. Suppose $r_0 = r_1 = 1$ and $r_{n+1} = r_n + 2r_{n-1}$ for each $n \in \mathbb{N}$. Find a formula for r_n for each $n \in \mathbb{N}$.