- 29. Solve the following initial value problems by separating the variables. Give the solutions explicitly and find their domains.

 - (a) $y' = (1 2t)y^2$, $y(0) = -\frac{1}{6}$ (b) $y' = -\frac{x}{y}$, y(1) = 1; (c) $y' = \frac{x^2}{y}$, y(0) = 1; (d) $y' = \frac{x^2}{y}$, y(0) = -1; (e) $y' = \frac{3x^2 1}{3 + 2y}$, y(0) = 1; (f) $\sin(2t) + \cos(3y)y' = 0$, $y(\frac{\pi}{2}) = \frac{\pi}{3}$.
- 30. Consider the linear first order equation with constant coefficients y' = ry + k.
 - (a) Find the general solution.
 - (b) Find all constant solutions.
 - (c) Find the solution with y(0) = 2.
 - (d) For a given point (t_0, y_0) , find the solution that goes through this point.
 - (e) Characterize all increasing solutions. Characterize all decreasing solutions.
 - (f) Determine the behavior of the solutions as $t \to \infty$.
- 31. Find the solutions of the following initial value problems:
 - (a) y' = 5y 1, y(0) = 2;
 - (b) y' = -y + 4, y(1) = -1;
 - (c) 5y' = 2y 3, y(-2) = 3;
 - (d) 3y' 2y = 1, y(-1) = 0;
 - (e) -2y' + 2y 4 = 0, y(5) = 10.
- 32. Consider a certain product on the market. Let a demand function D(t) and a supply function S(t) for this product be given. Also, let the function P(t) describe the market price of the product (as a function of the time t). We assume that S and D depend linearly on the market price P: $D(t) = \alpha + aP(t)$, $S(t) = \beta + bP(t)$.
 - (a) According to the model, should we assume a < 0 or a > 0?
 - (b) According to the model, should we assume b < 0 or b > 0?
 - (c) Now we assume that P is changing proportionally to the difference D-S, with constant of proportionality γ . According to the model, should we assume $\gamma < 0$ or $\gamma > 0$?
 - (d) Derive a differential equation for P and solve it.
 - (e) Calculate the so-called equilibrium price of the product, i.e., determine $\lim_{t\to\infty} P(t)$.
- 33. Solve the following initial value problems:

 - $\begin{array}{lll} \text{(a)} & y'-y=2te^{2t}, \ y(0)=1; & \text{(b)} & y'+2y=te^{-2t}, \ y(1)=0; \\ \text{(c)} & ty'+2y=t^2-t+1, \ y(1)=\frac{1}{2}, \ t>0; & \text{(d)} & y'+\frac{2}{t}y=\frac{\cos(t)}{t^2}, \ y(\pi)=0, \ t>0; \end{array}$
 - (e) $y' 2y = e^{2t}$, y(0) = 2; (f) $ty' + 3y = t^2$, y(1) = 0;
 - (h) $y' + 2ty = 2te^{-t^2}, y(2) = 0.$ (g) $y' = -t^2y$, y(0) = 1;