- 77. Check whether the following functions are harmonic:
 - (a) $u(x, y) = x^3 3x^2y$ in \mathbb{R}^2 ;
 - (b) $u(x, y) = e^x \cos y$ in \mathbb{R}^2 ;
 - (c) $u(x, y, z) = 3x^2 y^2 z^2$ in \mathbb{R}^3 ;
 - (d) $u(x, y, z) = e^x \sin \frac{y}{\sqrt{2}} \cos \frac{z}{\sqrt{2}}$ in \mathbb{R}^3 ;
 - (e) $f(x) = \frac{1}{\|x\|^{n-2}}$ in $\mathbb{R}^n \setminus \{0\}$.
- 78. Determine the points where the Cauchy-Riemann equations are satisfied for
 - (a) $f(z) = e^z$;
 - (b) $f(z) = \bar{z};$
 - (c) $f(z) = z^2 e^z$;
 - (d) $f(z) = |z|^2$.
- 79. Determine v such that f = u + iv with $u(x + iy) = 2x^3y 2xy^3 + x^2 y^2$ and f(0) = i satisfies the Cauchy-Riemann equations.
- 80. Let $D = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 < 9 \right\}$. Find the maximum value of u in \overline{D} , where u solves

$$u_{xx} + u_{yy} = 0$$
 in D , $u = \cos\left(\frac{\theta}{2}\right)$ on ∂D .

- 81. Solve $\Delta u = 0$, 0 < x < a, 0 < y < b, u(x, 0) = 0, u(x, b) = g(x), u(0, y) = 0, u(a, y) = 0.
- 82. Solve $\Delta u = 0$ on $D = \{ \binom{x}{y} : x^2 + y^2 < a^2 \}, u = a^k \cos(k\theta)$ on ∂D .
- 83. Solve $\Delta u = 0$ on $D = \{ \begin{pmatrix} x \\ y \end{pmatrix} : x^2 + y^2 < 4 \}, u = 32\sin(5\theta)$ on ∂D .
- 84. Find the transformed Laplacian operator in three dimensions when spherical coordinates are introduced.