- 54. Use Fourier series to solve the following boundary value problems:
 - (a) $u_t = u_{xx}$ (0 < x < 1, t > 0), u(0,t) = u(1,t) = 0, u(x,0) = x.
 - (b) $u_{tt} = u_{xx} \ (0 < x < \pi, \ t > 0), \ u(0, t) = u(\pi, t) = 0, \ u(x, 0) = 0, \ u_t(x, 0) = x^2(\pi x)^2.$
 - (c) $u_t = u_{xx}$ (0 < x < π , t > 0), $u(0,t) = u(\pi,t) = 0$, $u(x,0) = x(\pi x)$.
 - (d) $u_t = u_{xx}$, $(0 < x < \pi, t > 0)$, $u_x(0,t) = u_x(\pi,t) = 0$, $u(x,0) = \cos^4 x$.
 - (e) $9u_{tt} = u_{xx} \ (0 < x < \pi, \ t > 0), \ u(0, t) = u(\pi, t) = 0, \ u(x, 0) = 0, \ u_t(x, 0) = x(x \pi).$
- 55. Find the Fourier sine series in $(0, \pi)$ of $f(x) = \cos x$.
- 56. Find the Fourier cosine series in $(0, \pi)$ of $f(x) = \cos^3 x$.
- 57. Find the Fourier coefficients of f on [-l, l] if f is
 - (a) even;
 - (b) odd.
- 58. Find the Fourier coefficients of f on $[-\pi, \pi]$ for
 - (a) f(x) = x;
 - (b) f(x) = |x|;
 - (c) $f(x) = |\sin x|$;
 - (d) $f(x) = x^2$;
 - (e) $f(x) = \cosh(\alpha x), \ \alpha \neq 0$;
 - (f) f(x) = -3 if $-\pi \le x < 0$, f(x) = 0 if x = 0, and f(x) = 1 if $0 < x \le \pi$.
- 59. Use the previous problem to find the following infinite series:
 - (a) $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \dots;$
 - (b) $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots;$
 - (c) $\frac{1}{1\cdot 3} \frac{1}{3\cdot 5} + \frac{1}{5\cdot 7} \frac{1}{7\cdot 9} + \dots;$
 - (d) $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \frac{1}{5^2} \frac{1}{6^2} + \dots;$
 - (e) $\frac{1}{\alpha} + \sum_{n=1}^{\infty} \frac{2\alpha}{\alpha^2 + n^2}$.
- 60. Use the previous problem to determine the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 61. Find the complex form of the Fourier series of $f(x) = e^x$.