- 49. Discuss $f'' + \lambda f = 0$, kf(0) + f'(0) = f(l) + hf'(l) = 0.
- 50. Do separation of variables with $u_{tt} = c^2 u_{xx}$ (0 < x < l), u(0,t) = 0, $u_{tt}(l,t) + ku_x(l,t) = 0$.
- 51. Recall the eigenvalues of the problem $f''(x) + \lambda f(x) = 0$, f(0) = f(1) = 0. Divide the interval [0, 1] into N (where $N \in \mathbb{N}$) equally long intervals. Call the endpoints $x_0, x_1, \dots x_N$ and put $f_k = f(x_k)$. Now calculate $\lim_{h\to 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2}$ and use the result to derive a discretization (E_N) of the original problem. Find the eigenvalues (compare Problem 46) of the discrete problems (E_N) . Finally, determine the limit of the kth eigenvalues of (E_N) as N tends to ∞ .
- 52. Show that $\cos(nx)$ and $\sin(mx)$ are orthogonal (in the sense of Problem 45).
- 53. Find the Fourier coefficients of f if f is
 - (a) even;
 - (b) odd.
- 54. Suppose the following functions f are defined on $[-\pi,\pi]$ and 2π -periodically extended on \mathbb{R} . Sketch f. Find the Fourier series of f. Assume it converges to f. Find the values of the infinite sums given.
 - (a) f(x) = x for $x \in (-\pi, \pi)$ and f(x) = 0 for $x \in \{-\pi, \pi\}$. Find $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \frac{1}{9} \frac{1}{11} + \dots$
 - (b) f(x) = |x|. Find $1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots$
 - (c) $f(x) = |\sin x|$. Find $\frac{1}{1 \cdot 3} \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} \frac{1}{7 \cdot 9} + \dots$
 - (d) $f(x) = x^2$. Find $1 \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \frac{1}{5^2} \frac{1}{6^2} + \dots$
 - (e) $f(x) = \cosh(\alpha x), \ \alpha \neq 0$. Find $\frac{1}{\alpha} + \sum_{n=1}^{\infty} \frac{2\alpha}{\alpha^2 + n^2}$.
- 55. Use the previous problem to determine the value of $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- 56. Find the Fourier sine series in $(0, \pi)$ of $f(x) = \cos x$.
- 57. Find the complex form of the Fourier series of $f(x) = e^x$.