- 56. Separate the variables for the equation $tu_t = u_{xx} + 2u$ with $u(0,t) = u(\pi,t) = 0$. Show that the solution of this problem satisfying in addition u(x,0) = 0 is not unique.
- 57. Use the method of separation of variables and discuss the resulting eigenvalue problems for each of the following:
 - (a) $u_{xx} + u_{tt} = 0$ (0 < x < l, t > 0), u(0,t) = u(l,t) = 0;
 - (b) $u_{xx} + u_{tt} = 0$ (0 < x < l, t > 0), $u_x(0,t) = u_x(l,t) = 0$;
 - (c) $u_{tt} = c^2 u_{xx}$ (0 < x < l), u(0, t) = 0, $u_{tt}(l, t) + k u_x(l, t) = 0$;
 - (d) $u_{tt} + a^2 u_{xxxx} = 0$ (0 < x < l, t > 0), $u(0,t) = u(l,t) = u_{xx}(0,t) = u_{xx}(l,t) = 0$.
- 58. Show that $\cos(nx)$ and $\sin(mx)$ are orthogonal.
- 59. Find the Fourier coefficients of f on [-l, l] if f is
 - (a) even;
 - (b) odd.
- 60. Find the Fourier coefficients of f on $[-\pi, \pi]$ for
 - (a) f(x) = x;
 - (b) f(x) = |x|;
 - (c) $f(x) = |\sin x|$;
 - (d) $f(x) = x^2$;
 - (e) $f(x) = \cosh(\alpha x), \ \alpha \neq 0.$
- 61. Consider the second order difference equation $\Delta^2 f_k + \lambda f_{k+1} = 0$ (where the forward difference operator Δ is defined by $\Delta f_k = f_{k+1} f_k$). Determine the values of λ (and of θ) for which $f_k = \cos(k\theta)$, $f_k = \sin(k\theta)$, $f_k = \cosh(k\theta)$, and $f_k = \sinh(k\theta)$ solve the equation and hence find the general solution. Then find the eigenvalues and eigenfunctions of $\Delta^2 f_k + \lambda f_{k+1} = 0$, $f_0 = f_N = 0$, where $N \in \mathbb{N}$. How many eigenvalues does this problem have? Next, recall the eigenvalues of the problem $f''(x) + \lambda f(x) = 0$, f(0) = f(1) = 0. Divide the interval [0,1] into N (where $N \in \mathbb{N}$) equally long intervals. Call the endpoints x_0, x_1, \ldots, x_N and put $f_k = f(x_k)$. Now calculate $\lim_{h\to 0} \frac{f(x+h)+f(x-h)-2f(x)}{h^2}$ and use the result to derive a discretization (E_N) of the original problem. Find the eigenvalues of the discrete problems (E_N) . Finally, determine the limit of the kth eigenvalues of (E_N) as N tends to ∞ .