Recall: Second-Order Linear Equations

A second-order linear ODE is an ODE which can be written in the form

$$a_2(t)y''(t) + a_1(t)y'(t) + a_0(t)y(t) = f(t)$$

If f(t) = 0, the equation is called homogeneous.

Recall: The Auxiliary Equation

When solving the DE ay''+by'+cy=0, we assume $y=e^{rt}$ and obtain the auxiliary equation

$$ar^2 + br + c = 0$$

When solving the auxiliary equation, we will encounter one of these three cases:

- I. Two real, distinct roots
- II. One real, repeated root
- III. Two complex roots (which occur in a conjugate pair)

Complex Roots	of the	Auxiliary	/ Equation
---------------	--------	-----------	------------

If we find the complex roots

$$r = \lambda + \mu i$$

. $r = \lambda \pm \mu i$ then we obtain two complex solutions to the DE:

$$z_1 = e^{(\lambda + \mu i)t}$$
 and $z_2 = e^{(\lambda - \mu i)t}$

Unfortunately, we don't want complex solutions. We want real solutions!

Euler's Formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

Real Solutions from Complex Solutions

$$\begin{split} z_1 &= e^{(\lambda + \mu i)t} \\ &= e^{\lambda t} e^{\mu i t} \\ &= e^{\lambda t} [\cos(\mu t) + i \sin(\mu t)] \\ &= e^{\lambda t} \cos(\mu t) + i e^{\lambda t} \sin(\mu t) \end{split}$$

For simplicity, let $y_1=e^{\lambda t}\cos(\mu t)$ and $y_2=e^{\lambda t}\sin(\mu t)$.

Thus, $z_1 = y_1 + iy_2$ is a solution of the DE ay'' + by' + cy = 0.

Real Solutions from Complex Solutions

 $z_1=y_1+iy_2 \text{ is a solution of the DE } ay''+by'+cy=0.$

$$z'_1 = y'_1 + iy'_2 z''_1 = y''_1 + iy''_2$$

Substituting into our DE, we get

$$a(y_1'' + iy_2'') + b(y_1' + iy_2') + c(y_1 + iy_2) = 0$$

and we regroup the terms to get

$$(ay_1'' + by_1' + cy_1) + i(ay_2'' + by_2' + cy_2) = 0$$

Real Solutions from Complex Solutions

$$(ay_1'' + by_1' + cy_1) + i(ay_2'' + by_2' + cy_2) = 0$$

The only way this can be a true statement (which we know it is) is if both the real and imaginary parts are zero.

Thus,

$$ay_1'' + by_1' + cy_1 = 0$$

and

$$ay_2'' + by_2' + cy_2 = 0$$

meaning y_1 and y_2 are both real solutions of the DE.

Complex Roots of the Auxiliary Equation

Consider the differential equation ay''+by'+cy=0. If its auxiliary equation $ar^2+br+c=0$ has complex roots $r=\lambda\pm\mu i$, then

$$y_1 = e^{\lambda t} \cos(\mu t)$$

and

$$y_2 = e^{\lambda t} \sin(\mu t)$$

are linearly independent real solutions of the DE.

Example 1 Find the general solution of the differential equation	
y'' + 2y' + 2y = 0	
Example 2	
Find the general solution of the differential equation	
y'' + y' + y = 0	