- 10. Let $1 \leq p \leq \infty$. Show that $H^p(\partial \Delta)$ are Banach spaces.
- 11. For $z \in \partial \Delta$, define $f(z) = \frac{1}{\sqrt{1-z}}$.
 - (a) Is $f \in H^1(\partial \Delta)$?
 - (b) Is $f \in H^2(\partial \Delta)$?
- 12. Let X, Y be vector spaces and $L: X \to Y$ be linear. Put $Ker(L) = \{x \in X: L(x) = 0\}$. Show:
 - (a) L is one-to-one if and only if $Ker(L) = \{0\}$.
 - (b) All solutions of L(x) = y are given by $x_0 + \text{Ker}(L)$, where $L(x_0) = y$.
- 13. (a) Let X be a vector space and $A, B: X \to X$ be linear such that AB = BA. Prove that $(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^{n-k} B^k$ holds for all $n \in \mathbb{N}$.
 - (b) Define D on the set of all sequences by $D(\xi_1, \xi_2, \xi_3, \dots) = (\xi_2 \xi_1, \xi_3 \xi_2, \xi_4 \xi_3, \dots)$. Also define recursively $\Delta^0 \xi_{\nu} = \xi_{\nu}$ and $\Delta^k \xi_{\nu} = \Delta^{k-1} \xi_{\nu+1} \Delta^{k-1} \xi_{\nu}$ for all $k \in \mathbb{N}$. Use part (a) to show $\Delta^k \xi_0 = \sum_{\nu=0}^k (-1)^{\nu} {k \choose \nu} \xi_{k-\nu}$. Use this last formula to calculate $\sum_{i=0}^n (-1)^i {n \choose i} {i+a \choose m}$.
- 14. Find the norms of the following operators:
 - (a) The forward and backward shift operators on l^2 ;
 - (b) $D: l^{\infty} \to l^{\infty}$ (D defined as in the previous problem).
- 15. Find the norms of the following operators:
 - (a) The integration operator on C[a, b];
 - (b) Kepler's operator $Q: C[a, b] \to \mathbb{R}$ defined by $Qx = \frac{b-a}{6} \{x(a) + 4x(\frac{a+b}{2}) + x(b)\};$
 - (c) Bernstein's operator $B_n: C[0,1] \to C[0,1]$ defined by $(B_n x)(t) = \sum_{k=0}^n x(\frac{k}{n}) {n \choose k} t^k (1-t)^{n-k}$.
- 16. For a continuous function $k:[c,d]\times[a,b]\to\mathbb{C}$ define K by $(Kx)(t)=\int_a^b k(t,s)x(s)\mathrm{d}s$.
 - (a) Is K linear?
 - (b) Is $K: L^2(a,b) \to L^2(c,d)$ bounded?
 - (c) Is $K: C[a, b] \to C[c, d]$ bounded? If so, find ||K||.
- 17. Let A be an $n \times m$ -matrix and define L by L(x) = Ax for all $x \in \mathbb{R}^m$. Find ||L||:
 - (a) $L: (\mathbb{R}^m, \|\cdot\|_{\infty}) \to (\mathbb{R}^n, \|\cdot\|_{\infty});$
 - (b) $L: (\mathbb{R}^m, \|\cdot\|_1) \to (\mathbb{R}^n, \|\cdot\|_1);$
 - $(c)\ L:(\mathbb{R}^m,\left\|\cdot\right\|_1)\to(\mathbb{R}^n,\left\|\cdot\right\|_\infty);$
 - (d) $L: (\mathbb{R}^m, \|\cdot\|_2) \to (\mathbb{R}^n, \|\cdot\|_2).$
- 18. Let \mathcal{X} and \mathcal{Y} be normed spaces and $L: \mathcal{X} \to \mathcal{Y}$ be a bounded linear operator. Prove the following:
 - (a) $||L(x)|| \le ||x|| ||L||$;
 - (b) $||L|| = \sup_{||x||=1} ||L(x)||$;
 - (c) $||L|| = \sup_{||x|| \le 1} ||L(x)||$.