- 37. Let \mathcal{X} be a linear space. Elements of \mathcal{X}/\mathcal{M} (with \mathcal{M} a subspace) are also called *linear varieties*. A hyperplane \mathcal{H} is a a maximal proper linear variety. Show the following:
 - (a) Let \mathcal{H} be a hyperplane in \mathcal{X} . Then there exists a linear functional f on \mathcal{X} and a constant c such that $\mathcal{H} = \{x \in \mathcal{X} : f(x) = c\}$. Conversely, if f is a nonzero linear functional on \mathcal{X} , the set $\{x \in \mathcal{X} : f(x) = c\}$ is a hyperplane in \mathcal{X} .
 - (b) Let \mathcal{H} be a hyperplane in \mathcal{X} . If \mathcal{H} does not contain the origin, there is a unique linear functional f on \mathcal{X} such that $\mathcal{H} = \{x \in \mathcal{X} : f(x) = 1\}$.
 - (c) Let f be a nonzero linear functional on \mathcal{X} . Then the hyperplane $\{x \in \mathcal{X} : f(x) = c\}$ is closed for every c if and only if f is continuous.
 - (d) If f is a nonzero continuous linear function on \mathcal{X} , then the so-called negative and positive half-spaces $\{x \in \mathcal{X} : f(x) \leq c\}, \{x \in \mathcal{X} : f(x) < c\}, \{x \in \mathcal{X} : f(x) \geq c\}, \{x \in \mathcal{X} : f(x) > c\}$ are closed, open, closed, and open, respectively.
- 38. Prove the following "geometric" form of the Hahn-Banach Theorem and its consequences:
 - (a) Let K be a convex set having a nonempty interior in a real normed linear space \mathcal{X} . Suppose V is a linear variety in \mathcal{X} containing no interior points of K. Then there is a closed hyperplane in \mathcal{X} containing V but containing no interior points of K.
 - (b) If x is not an interior point of a convex set K which contains interior points, there is a closed hyperplane \mathcal{X} containing x such that K lies on one side of \mathcal{H} .
 - (c) Let K_1 and K_2 be convex sets in \mathcal{X} such that K_1 has interior points and K_2 contains no interior point of K_1 . Then there is a closed hyperplane \mathcal{X} separating K_1 and K_2 (i.e., K_1 and K_2 lie in opposite half-spaces).
 - (d) If K is a closed convex set and $x \notin K$, there is a closed half space containing K but not x.
 - (e) If K is a closed convex set in a normed space, then K is equal to the intersection of all the closed half-spaces that contain it.
- 39. Let X be a complete metric space and $E \subset X$.
 - (a) If E is of first category, is E^c then of second category?
 - (b) If E is of second category, is E^c then of first category?
- 40. Consider the space l_0 together with $\|\cdot\|_2$.
 - (a) Show that l_0 is of first category. Conclude that l_0 is not complete.
 - (b) Show that $T: l_0 \to l_0$ defined by $T(\{x_n\}) = \{\frac{x_n}{n}\}$ is a bijective, linear and bounded operator and that T^{-1} is a linear but unbounded operator.
- 41. Show that any infinite dimensional Banach space has a subspace that is not closed.
- 42. Let \mathcal{X} be a Banach space. Show that the following statements are equivalent:
 - (a) \mathcal{X} has finite dimension;
 - (b) All subspaces of \mathcal{X} are closed;
 - (c) All linear functionals on \mathcal{X} are continuous.
- 43. Let \mathcal{X} be a Banach space and \mathcal{Y} a normed linear space. Let $L_n \in \mathcal{B}(\mathcal{X}, \mathcal{Y})$ for each $n \in \mathbb{N}$ and suppose that $Lx = \lim_{n \to \infty} L_n x$ exists for each $x \in \mathcal{X}$. Prove the following "Fatou's Lemma": L is a bounded linear operator and $||L|| \le \liminf_{n \to \infty} ||L_n||$.
- 44. Let \mathcal{X} be a Banach space.
 - (a) Suppose $P: \mathcal{X} \to \mathcal{X}$ is linear such that $P^2 = P$ and such that $\operatorname{Im} P$ and $\operatorname{Ker} P$ are closed. Show that P is continuous.
 - (b) A linear operator $P: \mathcal{X} \to \mathcal{X}$ satisfying $P^2 = P$ is called a *linear projection*. Show that \mathcal{X} is finite dimensional if and only if all linear projections are continuous.