- Problems #6, Math 417, Dr. M. Bohner. Oct 28, 99. Due Nov 11, 2:05 pm. 45. In an inner product space (and only there) we have that $||x y||^2 + ||x + y||^2 = 2(||x||^2 + ||y||^2)$. Prove this Parallelogram Law. Draw a picture. Also state and prove the Pythagorean Theorem. Draw a picture. Show that $\langle x, y \rangle = \frac{1}{4} \sum_{n=0}^{3} i^n ||x + i^n y||^2$.
- 46. Let \mathcal{M} be a closed subspace of a Hilbert space. Show that $(\mathcal{M}^{\perp})^{\perp} = \mathcal{M}$. What is $(\mathcal{M}^{\perp})^{\perp}$ for an arbitrary subspace \mathcal{M} ?
- 47. Here are some applications of the theory presented in class (all in a Hilbert space):
 - (a) Let c_1, \ldots, c_n be scalars and y_1, \ldots, y_n be linearly independent vectors. Find the vector with minimum norm out of all vectors that satisfy $\langle x, y_i \rangle = c_i$ for all $1 \leq i \leq n$.
 - (b) Work on (a) in the explicit case of $c_1 = -1$, $c_2 = 0$, $c_3 = 1$, $y_1 = (1 \ 2 \ 0)^T$, $y_2 = (2 \ 0 \ 1)^T$, $y_3 = (0 \ 1 \ 2)$. Give an interpretation of this result and try to draw a picture.
 - (c) The shaft angular velocity ω of a d-c motor driven from a variable current source u is governed by $\dot{\omega} + \omega = u(t)$, where u(t) is the field current at time t. The angular position θ of the motor shaft is the time integral of ω . Assume that the motor is initially at rest. Use (a) to find the current function u of minimum energy (the energy for u is proportional to $\int_0^1 u^2(t) dt$) which rotates the shaft to the new rest position $\theta = 1$, $\omega = 0$ within one second.
 - (d) Suppose $y \in \mathbb{R}^m$ and W is an $m \times n$ -matrix with linearly independent columns. Find $\hat{\beta} \in \mathbb{R}^n$ which minimizes $||y - W\beta||$ over all $\beta \in \mathbb{R}^n$.
 - (e) Work on (d) in the explicit case of $y = \frac{1}{2}(1\ 4\ 7)^T$ and $W = (1\ 2\ 3)^T$. Give an interpretation of this result and draw a picture.
- 48. Get familiar with the Gram-Schmidt Orthogonalization Process and construct the Legendre, Hermite, and Laguerre polynomials (see Exercises 6–8 on p. 18 of the textbook).
- 49. Describe some of the consequences of the theorems presented in class for classical Fourier series.
- 50. Let \mathcal{H} be a Hilbert space.
 - (a) Show that the unit ball of \mathcal{H} is strictly convex.
 - (b) By (a) and Problem 32 (a) it follows that all Hahn-Banach extensions are unique. Prove this fact directly.
- 51. Let \mathcal{H} and \mathcal{K} be Hilbert spaces.
 - (a) Let $T: \mathcal{H} \to \mathcal{K}$ be a linear operator. Show that ||Tf|| = ||f|| for all $f \in \mathcal{H}$ iff $\langle Tf, Tg \rangle = \langle f, g \rangle$ for all $f, g \in \mathcal{H}$.
 - (b) Suppose $U:\mathcal{H}\to\mathcal{K}$ is onto, and that $\langle Uf,Ug\rangle=\langle f,g\rangle$ for all $f,g\in\mathcal{H}$. Show that U is
- 52. The geometry of a Hilbert space is so nice that a much stronger version of the Hahn-Banach Theorem is true. Let \mathcal{H} and \mathcal{K} be Hilbert spaces and \mathcal{M} a subspace of \mathcal{H} . Suppose $f: \mathcal{M} \to \mathcal{K}$ is a bounded linear operator. Show the following:
 - (a) f can be extended to be bounded and linear on $\overline{\mathcal{M}}$:
 - (b) f has a bounded and linear extension to \mathcal{H} .
- 53. Let \mathcal{P} be the collection of all polynomials.
 - (a) Show that for $p \in \mathcal{P}$ and $z \in \Delta$ there exists a $C_z > 0$ with $|p(z)| \leq C_z \left[\int_0^{2\pi} |p(e^{i\theta})|^2 \frac{\mathrm{d}\theta}{2\pi} \right]^{\frac{1}{2}}$.
 - (b) Show that there exists $h_z \in H^2(\partial \Delta)$ such that $p(z) = \langle p, h_z \rangle$ for all $p \in \mathcal{P}$.
 - (c) Give the h_z for each $z \in \Delta$ explicitly.
 - (d) Let $0 \le t_0 \le 1$. Show that there is no C with $p(t_0) \le C \left[\int_0^1 |p(t)|^2 dt \right]^{\frac{1}{2}}$ for all $p \in \mathcal{P}$.