- 1. Let $A: \mathcal{H} \to \mathcal{K}$ be a linear operator. Let $\{x_j\}_{j\in\mathbb{N}} \subset \mathcal{H}$. Show that the following are equivalent:
 - (a) $A \in \mathcal{B}(\mathcal{H}, \mathcal{K})$;
 - (b) $x_j \to x \Longrightarrow Ax_j \to Ax;$
 - (c) $x_j \rightharpoonup x \Longrightarrow Ax_j \rightharpoonup Ax;$
 - (d) $x_j \to x \Longrightarrow Ax_j \rightharpoonup Ax$.

(Hint for (d) \Longrightarrow (a): Suppose not. Then there is a sequence $\{x_n\}$ with $||x_n|| = 1$ such that $||Ax_n|| \ge n^2$. Consider the sequence $\{\frac{1}{n}x_n\}$.)