1. Given are the following data:

Ingredients (per 500ml)	Lager	Pilsener	Export	Bock
g carbohydrates	20	17	20	30
g proteine	1.5	1.5	1.55	1.6
calories	185	190	250	310
g alcohol	18	20	21.5	24.5
g minerals	1.25	1.25	1.5	1.75
costs (\$/500ml)	1.10	1.30	1.20	1.50

Write an LP that calculates the cheapest daily menu that contains at least 250g carbohydrates, 30g proteine, 1000 calories, 150g alcohol, and 25g minerals.

- 2. Prove that if x and y are feasible for an LP in standard form, then every point on the line segment \overline{xy} is also feasible. Prove that if x and y are optimal, then every point on the line segment \overline{xy} is also optimal.
- 3. A chemical factory has to mix four gases in such a way that
 - the total gas volume is exactly $100m^3$;
 - the mixture doesn't cost more than \$500;
 - the portion of the fourth gas is no more than 50%;
 - at least $8m^3$ of the second gas is contained in the mixture;
 - at most $3g/m^3$ sulfur is in the mixture;
 - the heating value of the mixture should be as large as possible.

The following table shows the specific data for all four gases:

	Gas 1	Gas 2	Gas 3	Gas 4
sulfur contained in g/m^3	7.244	0	0.2	2
costs in \$ per m^3	15	38	1.40	2.90
heating value per m^3	1.056	2.043	0.17	5.74

Introduce appropriate decision variables and state the problem as an LP in standard form.

4. Use the Two-Phase Simplex Method to solve

$$\begin{cases} 2x_1 + 2x_2 + 4x_3 - x_4 & \to & \min \\ x_1 + 2x_2 + 2x_4 & = & 1 \\ x_1 + x_2 + 2x_3 & = & 1 \\ x_1, x_2, x_3, x_4 & \ge & 0. \end{cases}$$

- 5. Work on Problem 6 a-d of Section 6.3 in the textbook.
- 6. Solve

$$\begin{cases} 7x_1 + 10x_2 & \to & \min \\ x_1 + x_2 & \ge & 1 \\ x_1 + 2x_2 & \ge & 3 \\ x_1, x_2 & \ge & 0 \end{cases}$$

by solving the dual LP and using the complementary conditions.

7. Solve the transportation problem given by

$$a = \begin{bmatrix} 12 \\ 8 \end{bmatrix}, b = \begin{bmatrix} 7 \\ 5 \\ 6 \\ 2 \end{bmatrix}, C = \begin{bmatrix} 3 & 2 & 5 & 0 \\ 4 & 1 & 2 & 0 \end{bmatrix}$$

where a is the supply vector, b is the demand vector, and C is the cost matrix. Use the northwest corner method to find an initial bfs.

8. Use Dijkstra's Algorithm to work on Problem 5 of Section 8.2 in the textbook.