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ABSTRACT

In this work we derive a linear second-order dynamic equation which describes multiplier-
accelerator models on time scales. After we provide the general form of the dynamic equa-
tion, which considers both taxes and foreign trade, i.e., imports and exports, we give four
special cases of this general multiplier-accelerator model: (1) Samuelson’s basic multiplier-
accelerator model. (2) We extend this model with the assumption that taxes are raised by
the government and that these taxes are immediately reinvested by the government. (3)
We give Hicks’ extension of the basic multiplier-accelerator model as an example and (4)
extend this model by allowing foreign trade in the next step. For each of these models we
present the dynamic equation in both expanded and self-adjoint form and give examples
for particular time scales.
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1 Introduction

In 1939, Samuelson combined in (Samuelson, 1939) the multiplier model with the acceleration
principle. The acceleration principle is a theory which states that small changes in the demand
for consume goods can generate large changes in the demand for investment (capital) goods
needed for their production. In (Samuelson, 1939), he derived a second-order difference equa-
tion which describes the model of the combination of those two principles. In his interaction
model, he assumes that the national income Y is dependent on the following three expendi-
ture streams: Induced investment I, autonomous investmentG (government expenditure), and
consumption C. Autonomous investment is the part of investment that is totally independent of
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the current state of the economy, whereas the induced investment does depend on the present
state of the economy. The consumption is supposed to be strictly proportional to the national
income with a one period lag, i.e., (1) Ct = bYt−1, where b is the propensity to spend money.
If now one of the components G or I, i.e., autonomous or induced investment, is increased,
then the multiplier doctrine states that the national income will also increase, but this increase
is higher than the initial increase of investment. In (Samuelson, 1970), the author defined:
“The multiplier is the number by which the change in investment must be multiplied in order
to present us with the resulting change in income.” The model also assumes that the induced
investment is in a constant ratio with the increase of the consumption from the previous period
to the current period, i.e., (2) It = βΔCt−1 = β(Ct − Ct−1). In this formula β denotes the
accelerator coefficient. This is how the accelerator principle comes into the model. The ac-
celeration effect is the impact of change in consumption on the investment. We also see from
(2) that consumption has to continue increasing to make the investment stand still. Finally the
equilibrium condition (3) Yt = Ct + It + Gt closes the model. Using (1) and (2), Samuelson
derived from (3) the linear second-order difference equation

Yt − b(1 + β)Yt−1 + bβYt−2 = G. (1.1)

Of course this model can be mademore complex for instance by assuming that the government
raises taxes. In this work we assume that the government reinvests the taxes completely in the
same period plus a constant rate Ḡ. Later Hicks extended this model, by making further as-
sumptions. This model differs from Samuelson’s basic multiplier-accelerator model according
to (Gandolfo, 1980, Chapter 6), in the following three main points:

1. The autonomous investment G is supposed to be of the form Gt = A0(1 + g)t, where A0

is the initial value of the autonomous investment and g the growth rate of the autonomous
investment.

2. The accelerator-induced investment I does now not depend anymore only on the change
in the consumption demand, but on the change of the total demand, i.e., on the change
of the national income.

3. The induced investment is directly proportional to the increase of the national income
from two periods before to the previous period, i.e.,ΔYt−2 = Yt−1−Yt−2, and notΔYt−1 =

Yt − Yt−1.

Another way to make the models more realistic is to assume that we are in an open economy.
With open economy we always mean that trade between countries takes place, i.e., we have
two new streams, imports and exports. If we say closed economy, we always mean that the
country does neither import goods from other countries nor does it export goods to other coun-
tries. The Hicksian model can be extended in a way that allows foreign trade, i.e., we suppose
that the nation imports and exports goods. We assume that the imports of the current period
Mt are directly proportional to the national income with a one period lag, i.e., Mt = mYt−1.
Moreover we presume that exports Xt grow with initial value X0 and a constant growth rate x,
i.e., Xt = X0(1 + x)t. A summary of all important variables with explanations is provided in
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Table 1. Our goal is to derive a model which generalizes several multiplier-accelerator models
(the four which are mentioned in the abstract and explained above) on time scales where the
forward jump operator is delta-differentiable. This means that we want to unify and extend the
real and discrete cases of these models. The setup of this paper is as follows. In Section 2, we
establish a general multiplier-accelerator model on time scales. Next, in Section 3, we apply
our result to four different models and also show how the classical versions of these models
follow from our general results as special cases. Examples for specific time scales are offered.
Finally, in Section 4, we provide a short conclusion to summarize what has been done in the
paper.
Time scales theory was originally introduced by Stefan Hilger in 1988 in his PhD thesis (Hilger,
1988), supervised by Bernd Aulbach. In his work, he started to unify the theory of differential
equations and difference equations. In former times mathematicians always thought that a
dynamical process is either of a continuous or a discrete nature. But there are examples where
a unifying approach makes more sense. Applications in the fast growing time scales field can
be found for example in biological, physical-, life- and social sciences, and economics. Atici
et al. already examined some economic issues on time scales in (Atici, Biles and Lebedinsky,
2006) and (Atici and Uysal, 2008). In this work we omit a detailed introduction to time scales
and recommend the interested reader to consult (Bohner and Peterson, 2001) and (Bohner
and Peterson, 2003).

Table 1: Explanation of variables

stream or variable explanation

Y national income
I induced investment
G autonomous investment
C consumption
b propensity to spend money
β accelerator coefficient
M imports
X exports
m import rate
X0 initial value of exports
x growth rate of exports
A0 initial value of autonomous investment (in Hicks’ model)
g growth rate of autonomous investment
A sum of autonomous investment G and exports X

τ tax rate
γ either β or β/b depending on the model
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2 The General Multiplier-accelerator Model on Time Scales

Let T be a time scale. For t ∈ T, the forward jump operator σ : T → T is defined by

σ(t) := inf{s ∈ T : s > t}.

In this definition we set inf ∅ = sup T (i.e., σ(t) = t if T has maximum t). If f : T → R is
a function, then the function f σ : T → R is defined by fσ = f ◦ σ. The graininess function
μ : T → [0,∞) is defined by

μ(t) := σ(t) − t.

We will also need the set T
κ which is defined in the following way: If T has a left-scattered

maximum m, then T
κ = T − {m}. Else, T

κ = T. Suppose f : T → R is a function and let
t ∈ T

κ. Then fΔ(t) is defined as the number (provided that it exists) such that for every ε > 0,
there exists a neighborhood U of t (i.e., U = (t − δ, t + δ) ∩ T for some δ > 0) such that

∣∣[f(σ(t)) − f(s)] − fΔ(t)[σ(t) − s]
∣∣ ≤ ε|σ(t) − s| for all s ∈ U.

We call this number fΔ(t) the delta-derivative of f at t. A function f : T → R is called rd-
continuous provided it is continuous at right-dense points in T and its left sided limits exist
(finite) at left-dense points in T. We will write the set of rd-continuous functions f : T → R as
Crd = Crd(T) = Crd(T, R). A function p : T → R is said to be regressive given that

1 + μ(t)p(t) 	= 0 for all t ∈ T
κ

holds. The set of all regressive and rd-continuous functions f : T → R is denoted by R =

R(T) = R(T, R). Let p, q ∈ R. Define the “circle minus” subtraction 
 on R by

(p 
 q)(t) :=
p(t) − q(t)

1 + μ(t)q(t)
for all t ∈ T

κ.

The time scale exponential function ep(·, t0) is defined for p ∈ R and t0 ∈ T as the unique
solution of the initial value problem

yΔ = p(t)y, y(t0) = 1 on T.

In our calculations we will also need the two useful formulas

Zσ = Z + μZΔ, (2.1)

and (see (Bohner and Tisdell, 2005, Lemma 1))

ZσΔ = σΔZΔσ. (2.2)

Throughout this whole work we require that the forward jump operator σ is delta-differentiable
and that Y : T → R, I : T → R, C : T → R, A : T → R and M : T → R. Furthermore we
require that I, C, A, andM are delta-differentiable on T

κ.
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2.1 Expanded form of the general multiplier-accelerator model

Let us consider an economy where the national income depends on consumption, induced
and autonomous investment, and import and exports. Furthermore suppose the consumption
is strictly proportional to the national income with a one-period lag and the induced investment
is in a constant ratio with the increase of the consumption from the previous period to the
current period. Moreover we assume that the autonomous investment consists of a constant
component Ḡ and an exponentially growing componentA0eg(·, t0) with growth rate g and initial
autonomous investment A0, that the exports grow exponentially with growth rate x and initial
export X0, that the imports of the current period Mt are directly proportional to the national
income with a one-period lag, and finally that the tax rate is currently τ .

Definition 2.1. We define the general multiplier-accelerator model on time scales with the
following four axioms:

Y = C + I + A − M + τY, (2.3)

where A := G + X, with G = Ḡ + A0eg(·, t0) and X = X0ex(·, t0),

Iσ = γCΔ, (2.4)

Cσ = b(1 − τ)Y + (μ − 1)Y Δ, (2.5)

Mσ = mY. (2.6)

Lemma 2.1. In the general multiplier-accelerator model we have

IΔ = (1 − τ)Y Δ −
1

γ
Iσ − AΔ + MΔ (2.7)

and
Y Δ = Iσ + Aσ − (1 + m − b(1 − τ))Y + τY σ. (2.8)

Proof. From equations (2.3) and (2.4) we have

IΔ (2.3)
= Y Δ − CΔ − AΔ + MΔ − τY Δ (2.4)

= (1 − τ)Y Δ −
1

γ
Iσ − AΔ + MΔ,

and using additionally equations (2.5), (2.6) and (2.1) we can derive

Iσ + Aσ − (1 + m − b(1 − τ))Y + τY σ − Y Δ

(2.5)
= Iσ + Aσ − Y − mY + b(1 − τ)Y + τY σ −

(
b(1 − τ)Y − Cσ + μY Δ

)
(2.6)
= Iσ + Aσ + Cσ − Mσ + τY σ −

(
Y + μY Δ

)
(2.1)
= (C + I + A − M + τY )σ − Y σ (2.3)

= 0,

which concludes the proof.

Theorem 2.2. Suppose that σΔ exists and let

c := σΔ

(
1

γ
− 1 − σΔμ

1

γ
τ

)
∈ R and d := b(1 − τ) − 1. (2.9)

Then Y satisfies

Y ΔΔ +
c + σΔ 1

γ
μ(m − τ − d) − d

1 + μc
Y Δ +

σΔ 1
γ
(m − τ − d)

1 + μc
Y =

σΔ 1
γ

1 + μc
Aσσ . (2.10)
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Proof. Using Lemma 2.1 and equations (2.2), (2.1) and (2.6), we can derive that

Y ΔΔ (2.8)
= IσΔ + AσΔ − (1 + m − b(1 − τ))Y Δ + τY σΔ

(2.2)
= σΔIΔσ + AσΔ + (d − m)Y Δ + σΔτY Δσ

(2.7)
= σΔ

[
(1 − τ)Y Δσ −

1

γ
Iσσ − AΔσ + MΔσ

]
+ AσΔ

+(d − m)Y Δ + σΔτY Δσ

(2.8)
= σΔ(1 − τ)Y Δσ − σΔ 1

γ
(Y Δσ − Aσσ + (1 + m − b(1 − τ))Y σ − τY σσ)

−σΔAΔσ + σΔMΔσ + AσΔ + (d − m)Y Δ + σΔτY Δσ

(2.1)
=
(2.2)

σΔ

(
1 −

1

γ

)
(Y Δ + μY ΔΔ) + σΔ 1

γ
Aσσ + σΔ 1

γ
(d − m)(Y + μY Δ)

+σΔ 1

γ
τ(Y + μY Δ + μσΔ(Y Δ + μY ΔΔ)) + MσΔ + (d − m)Y Δ

(2.6)
= σΔ

(
1 −

1

γ

)
(Y Δ + μY ΔΔ) + σΔ 1

γ
Aσσ + σΔ 1

γ
(d − m)(Y + μY Δ)

+σΔ 1

γ
τ(Y + μY Δ + μσΔ(Y Δ + μY ΔΔ)) + dY Δ

= −μcY ΔΔ +

[
−c + σΔ 1

γ
μ(d − m + τ) + d

]
Y Δ + σΔ 1

γ
(d − m + τ)Y

+σΔ 1

γ
Aσσ ,

which completes the proof.

Remark 2.1. If we assume Y = Ȳ to be constant, we obtain a particular solution of (2.10)

Ȳ =
Aσσ

m − τ − d
, (2.11)

which is the equilibrium value of the national income. The deviations from this equilibrium value
will be given by the general solution of the corresponding homogeneous equation. The factor
1/[m − τ − d] in (2.11) is called the multiplier coefficient. We know that σ(t) = μ(t) + t, i.e.,
if μ is constant, then σΔ(t) = μΔ(t) + 1 = 1. We can solve the homogeneous part of (2.10)
by finding the roots of the corresponding characteristic equation, provided that the homoge-
neous equation is regressive. Once we find the two solutions λ1 and λ2 of the corresponding
characteristic equation of (2.10), we know that the general solution of (2.10) is of the form

Y = a1eλ1
(·, t0) + a2eλ2

(·, t0) +
Aσσ

m − τ − d
. (2.12)

2.2 Self-adjoint form of the general multiplier-accelerator model

Since the expanded form of the second-order linear dynamic equation (2.10) seems rather
complicated, we derive now the self-adjoint form of (2.10). The next theorem tells us under
which conditions a dynamic equation in expanded form can be transformed into an equation of
the form

(pxΔ)Δ(t) + q(t)xσ(t) = 0, (2.13)

and more importantly it tells us how to transform it into form (2.13).
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Theorem 2.3. ((Bohner and Peterson, 2001, Theorem 4.12)) If a1, a2 ∈ Crd and μa2 − a1 ∈ R,
then we can write the second-order dynamic equation

Y ΔΔ + a1(t)Y
Δ + a2(t)Y = 0

in self-adjoint form (2.13), where (with t0 ∈ T
κ)

p = eα(·, t0), α = 
(μa2 − a1), and q = (1 + μα) pa2.

Theorem 2.4. Let c and d be as in (2.9). Suppose σΔ ∈ Crd and c, d ∈ R. Then the corre-
sponding homogeneous equation of (2.10) has the self-adjoint form

(
eα(·, t0)Y

Δ
)Δ

(t) + σΔ(t)
1

γ
[(m − τ) 
 d](t)eα(t, t0)Y

σ(t) = 0, (2.14)

where
α = c 
 d.

Proof. By Theorem 2.3 we have

α = 


(
σΔ 1

γ
μ(m − τ − d)

1 + μc
−

c + σΔ 1
γ
μ(m − τ − d) − d

1 + μc

)

= 


(
d − c

1 + μc

)
= 
(d 
 c) = c 
 d,

where we have used (Bohner and Peterson, 2001, Exercise 2.28). Thus we get (using (Bohner
and Peterson, 2001, Theorem 2.36))

p = eα(·, t0) = ec�d(·, t0) =
ec(·, t0)

ed(·, t0)
.

Furthermore

q = (1 + μα) pa2 = [1 + μ(c 
 d)]pa2 =
1 + μc

1 + μd
pa2 = pσΔ 1

γ

m − τ − d

1 + μd

= pσΔ 1

γ
[(m − τ) 
 d].

This completes the proof.

3 Applications

3.1 The tax-extended version of the basic multiplier-accelerator model

In this section we set m = 0, γ = β, A0 = 0 and X0 = 0.

Theorem 3.1 (Expanded Form). Suppose that σΔ exists and let

c := σΔ

(
1

β
− 1 − σΔμ

1

β
τ

)
∈ R and d := b(1 − τ) − 1. (3.1)

Then Y satisfies

Y ΔΔ +
c − σΔ 1

β
μ(τ + d) − d

1 + μc
Y Δ −

σΔ 1
β
(τ + d)

1 + μc
Y =

σΔ 1
β

1 + μc
Ḡ. (3.2)
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Proof. The proof follows directly from Theorem 2.2.

Theorem 3.2 (Self-Adjoint Form). Let c and d be as in (3.1). Suppose σΔ ∈ Crd and c, d ∈ R.
Then the corresponding homogeneous equation of (3.2) has the self-adjoint form

(
eα(·, t0)Y

Δ
)Δ

(t) + σΔ(t)
1

β
[(−τ) 
 (b(1 − τ) − 1)](t)eα(t, t0)Y

σ(t) = 0, (3.3)

where
α = σΔ

(
1

β
(1 − σΔμτ) − 1

)

 (b(1 − τ) − 1) = c 
 d.

Proof. The proof follows immediately from Theorem 2.4.

Example 3.3. (i) If T = R and t0 = 0, then equation (3.3) can be written as(
e
( 1

β
−b(1−τ))t

Y ′

)′

+
1

β
(1 − b)(1 − τ)e

( 1

β
−b(1−τ))t

Y = 0.

(ii) If T = Z and t0 = 0, we obtain the expanded form

ΔΔYt + (2 − b(1 + β))ΔYt + (1 − b)Yt =
Ḡ

1 − τ

or using the usual substitutions we arrive at (see (Gandolfo, 1980, Exercise 6.1.b))

Yt+2 − b(1 + β)Yt+1 + βbYt =
Ḡ

1 − τ
.

3.2 Samuelson’s basic multiplier-accelerator model

Now we set m = 0, τ = 0, A0 = 0, X0 = 0 and γ = β. Looking at the general multiplier-
accelerator model, we can derive the following theorems. Samuelson’s multiplier-accelerator
model can be described on time scales with the following linear second-order dynamic equa-
tion.

Theorem 3.4 (Expanded Form). Suppose that σΔ exists and let

c := σΔ

(
1

β
− 1

)
∈ R and d := b − 1. (3.4)

Then Y satisfies

Y ΔΔ +
c − d

(
1 + σΔ 1

β
μ
)

1 + μc
Y Δ −

σΔ 1
β
d

1 + μc
Y =

σΔ 1
β

1 + μc
Gσσ . (3.5)

Proof. The proof follows directly from Theorem 3.1 with τ = 0.

The next theorem tells us how equation (3.5) can be written in self-adjoint form.

Theorem 3.5 (Self-Adjoint Form). Let c and d be as in (3.4). Suppose σΔ ∈ Crd and c, d ∈ R.
Then the corresponding homogeneous equation of (3.5) has the self-adjoint form

(
eα(·, t0)Y

Δ
)Δ

(t) + σΔ(t)
1

β
(
(b − 1))(t)eα(t, t0)Y

σ(t) = 0, (3.6)

where
α = σΔ

(
1

β
− 1

)

 (b − 1).
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Proof. The proof follows immediately from Theorem 3.2 with τ = 0.

Example 3.6. (i) In the discrete case (T = Z), we have μ = 1 and σΔ = 1. Thus equation
(3.5) turns into

ΔΔYt + (2 − b(1 + β))ΔYt + (1 − b)Yt = Gt+2, (3.7)

If we substitute ΔYt = Yt+1 − Yt and ΔΔYt = Yt+2 − 2Yt+1 + Yt in (3.7), then equation
(3.7) turns into

Yt+2 − b(1 + β)Yt+1 + bβYt = Gt+2,

i.e., the homogeneouspart of the equation is the same as in the model without taxes. This
is the linear second-order difference equation Samuelson derived in (Samuelson, 1970).

(ii) In the continuous case (T = R), we have μ = 0 and σΔ = 1. This means that equation
(3.5) has now the form

Y
′′

+

(
1

β
− b

)
Y

′

+
1

β
(1 − b)Y =

G

β
,

compare (Puu and Sushko, 2006, Chapters 3.8 and 3.9).

(iii) If T = qN, then μ = (q − 1)t and σΔ = q, i.e., equation (3.5) can be rewritten as

Y ΔΔ +
q 1

β
(1 − b)(q − 1)t − q(1 − 1

β
) + 1 − b

1 − q(1 − 1
β
)(q − 1)t

Y Δ +
q 1

β
(1 − b)

1 − q(1 − 1
β
)(q − 1)t

Y

=
q 1

β

1 − q(1 − 1
β
)(q − 1)t

G
(
q2t

)
.

3.3 The Hicksian extension in open economies

In this section we set τ = 0, γ = β
b
and Ḡ = 0. The Hicksian extension assumes the au-

tonomous investment to grow exponentially with initial value A0 and constant growth rate g.
Furthermore it is assumed that the induced investment I does not depend anymore only on
the change in consumption demand, it now depends on the change of the total demand. For
more details, the interested reader might consult (Gandolfo, 1980).

Theorem 3.7 (Expanded Form). Suppose that σΔ exists and let

c := σΔ

(
1

γ
− 1

)
∈ R and d := b − 1. (3.8)

Then Y satisfies

Y ΔΔ +
c + σΔ 1

γ
μ(m − d) − d

1 + μc
Y Δ +

σΔ 1
γ
(m − d)

1 + μc
Y =

σΔ 1
γ

1 + μc
Aσσ, (3.9)

where Aσσ = A0e
σσ
g (·, t0) + X0e

σσ
x (·, t0).

Proof. The proof follows directly from Theorem 2.2.
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Theorem 3.8 (Self-Adjoint Form). Let c and d be as in (3.8). Suppose σΔ ∈ Crd and c, d ∈ R.
Then the corresponding homogeneous equation of (3.9) has the self-adjoint form

(
eα(·, t0)Y

Δ
)Δ

(t) + σΔ(t)
1

γ
[m 
 (b − 1)](t)eα(t, t0)Y

σ(t) = 0, (3.10)

where
α = σΔ

(
1

γ
− 1

)

 (b − 1) = c 
 d.

Proof. The proof follows immediately from Theorem 2.4.

Example 3.9. (i) If T = Z and t0 = 0, then equation (3.9) has the following form.

ΔΔYt +

1
γ
(2 + m − b) − b

1
γ

ΔYt + (1 − b + m)Yt = A0(1 + g)t+2 + X0(1 + x)t+2,

or applying the usual substitutions we obtain (see (Gandolfo, 1980, Exercise 6.3))

Yt+2 + (m − (b + β)) + βYt = At+2.

(ii) If T = R and t0 = 0, then equation (3.9) turns into

Y ′′ +

(
1

γ
− b

)
Y ′ +

1

γ
(1 − b + m)Y =

1

γ

(
A0e

gt + X0e
xt
)

=
1

γ
A(t).

3.4 The Hicksian extension in closed economies

In this section we set m = 0, τ = 0, Ḡ = 0, X0 = 0 and γ = β
b
.

Theorem 3.10 (Expanded Form). Suppose that σΔ exists and let

c := σΔ

(
1

γ
− 1

)
∈ R and d := b − 1. (3.11)

Then Y satisfies

Y ΔΔ +
c − d

(
1 + σΔ 1

γ
μ
)

1 + μc
Y Δ −

σΔ 1
γ
d

1 + μc
Y =

σΔ 1
γ

1 + μc
A0e

σσ
g (·, t0). (3.12)

Proof. The proof follows directly from Theorem 3.7 with m = 0 and X0 = 0.

Theorem 3.11 (Self-Adjoint Form). Let c and d be as in (3.11). Suppose
σΔ ∈ Crd and c, d ∈ R. Then the corresponding homogeneous equation of (3.12) has the
self-adjoint form

(eα(·, t0)Y Δ)Δ(t) + σΔ(t)
1

γ
(
(b − 1))(t)eα(t, t0)Y

σ(t) = 0, (3.13)

where
α = σΔ

(
1

γ
− 1

)

 (b − 1) = c 
 d.

Proof. The proof follows directly from Theorem 3.8 with m = 0 and X0 = 0.
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Example 3.12. (i) If T = Z and t0 = 0, then equation (3.12) turns into

ΔΔYt + (2 − b(1 + γ))ΔYt + (1 − b)Yt = A0(1 + g)t+2,

or (see (Gandolfo, 1980, Exercise 6.2))

Yt+2 − (b + β)Yt+1 + βYt = A0(1 + g)t+2.

(ii) If T = R and t0 = 0, then equation (3.12) can be written as

Y
′′

+

(
1

γ
− b

)
Y

′

+
1

γ
(1 − b)Y =

A0e
gt

γ
.

(iii) If T = qN, then μ = (q − 1)t and σΔ = q, i.e., equation (3.12) can be rewritten as

Y ΔΔ +
q 1

γ
(1 − b)(q − 1)t − q(1 − 1

γ
) + 1 − b

1 − q(1 − 1
γ
)(q − 1)t

Y Δ +
q 1

γ
(1 − b)

1 − q(1 − 1
γ
)(q − 1)t

Y

=
q 1

γ

1 − q(1 − 1
γ
)(q − 1)t

A0e
σσ
g (t, t0).

4 Summary

This paper has considered the problem of unification of continuous and discrete multiplier-
accelerator models. To accomplish this goal, the relatively new theory of dynamic equations
on time scales was employed. This theory not only unifies the continuous and the discrete
cases, but also extends those to other cases “in between”. We presented a general multiplier-
accelerator model on a time scale in both the expanded and self-adjoint form and used it to
derive four other multiplier-accelerator models on a time scale: Samuelson’s basic multiplier-
accelerator model, the tax-extended version of the basic multiplier-accelerator, the Hicksian
extension in closed economies, and the Hicksian extension in open economies. For each of
the four models, we gave various examples using different time scales, and we also showed
how they reduce to the classical models when the time scale is chosen to be the set of all
integers.
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