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Abstract.

This research used two machine leaning methods, the Support Vector Regression (SVR) and
Back-Propagation Neural Network (BPN), to create the cost prediction models for airplane
wing-box structural design, and verified the feasibility and efficiency for both methods. In the case
study, four different main structural part groups of the wing-box, Spars/Ribs/Skins/Stringers, were
chosen. In the parts data base, the part dimensions were included and used for classifying the part
groups. Each part group has 150 bill of parts, 100 bill of parts used for training samples, 50 bill of
parts used for predicting samples, to test there accuracy. After verified through wing-box case
study, the results showed either SVR or BPN can precisely predicting the design costs. But
compare to the BPN, SVR can get the global optimal solution while using less decision parameters.
This can save lots of time for searching the best parameters combination when creating the
prediction model.
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L 15~50 L 10~25 L 10~30 L 30~50
Spar | W 2~10 | Ribs | W | 5~10 | Skins | W 2~10 | Stringers | W | 30~50
T 2~10 T 2~5 T 2~10 T 0.1~1
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Table 2 SVR % % =& £

Parts Train Samples | kernel C y & MSE | Test Samples | MSE | MAPE(%)
Spar 1024 | 0.25 | 0.0078125 | 0.025 0.11 2.436
Ribs 100 samples RBE 1024 | 0.125 | 0.0078125 | 0.0002 | 50 samples | 0.064 2.1064
Stringers per each part 1024 | 0.125 | 0.0078125 | 0.0015 | per each part | 0.155 2.078
Skins 1024 | 0.125 | 0.0078125 | 0.0007 0.05 3.0146
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BFEE BPN By » 7 73] & B4 @R AR HEA] R RIE I 5 22 (MSE,
MAPE) - %4 Spar = BPN %E,? WA DR FE B 2 MSE 5 0.095 5 pI3E RS B 2 MSE &
0.1156 ; MAPE 5 2.4803% - ‘&1 i RIbS i BPN g Bl 4] 2 g B 5 »c MSE 5 0.085 5 Bl
@y B2 MSE 5 0.077 5 MAPE 5 2.3917% > & * Stringers f BPN TRRIHCR] 2 p B
% 22 MSE & 0.098; il3# Fé & 4f » MSE & 0.1696; MAPE & 3.1631%: &1 i* Skins 7 BPN
TERIBEA R B S o MSE 5 0.099 5 Bl R B 2 MSE 5 0.073 ; MAPE % 2.08% » %
%1 BPN 5 4 Table 3 #1777 -

Table 3 BPN % % =5 4
Parts Train Samples | MSE | Test Samples | MSE | MAPE(%)
Spar 0.095 0.1156 2.4803
Ribs 100 samples | 0.085 | 50 samples 0.077 2.3917
Stringers | per each part | 0.098 | per each part | 0.1696 3.1631
Skins 0.099 0.073 2.08

%’ﬁ“é g SVR 22 BPN & 87 2 420 & SRR (T3S R R S 7 v SVR B F B
PR & S et BPND R4 i Spar il % % 536 SVRAE B 2 ipl3# 4 2 MSE 5 0.11
MAPE % 2.436% : 56 BPN i ¥ 2 |35 »c MSE % 0.1156 » MAPE % 2.4803% o /&1 i
Ribs ]38 % % (548 SVRE £ 2 32 4 »c MSE 5 0.064 > MAPE : 2.1064% : 5i% BPN i&
# 2l 22 MSE 5 0.077 » MAPE 5 2.3917% = % Stringers ipl 3% & % 546 SVRE &
2 il 4 »c MSE 5 0.155 » MAPE 5 2.078% ; X5 i BPN i ¥ 2 i#]3% 4 »z MSE 5 0.1696 -
MAPE 5 2.08% % Skins ifl3# % % 518 SVR & ¥ 2 i3 5 »c MSE 3 0.05+ MAPE %
3.0146% ; ki BPN i ¥ 2 i#[3# 4 »c MSE 4 0.073 - MAPE 5 3.1631% > SVR £ BPN 3 4t
{8 R 3R % v fde Table 4 #1751 o

Table 4 SVR & BPN 2" 318 BliR S & v i

Parts Performance | SVR BPN
Spar MSE 0.11 0.1156
MAPE (%) 2436 | 2.4803
Ribs MSE 0.064 | 0.077
MAPE(%) | 2.1064 | 2.3917
Stringers MSE 0.155 | 0.1696
MAPE (%) 2.078 2.08
SKins MSE 0.05 0.073
MAPE(%) | 3.0146 | 3.1631

FRIE > blhod 1 Spar. **#”*(L43W5T4) HeE 50 ¥ 2 4 Spar B

e R R BHERE S AR RFERLF - B Wing-Box & %4t g chikih i
it = < (L38,W5,T5) » & & 3 i% » :¥km. Pf? + #c B 4o Table 5 #75% o

Table 5 Wing-Box ”Lr%f' f# % £ %
Parts Number W Quantlty
Spar 1 43 5 4 5
2 38|5]|5 3
Ribs 3 25|71 4 3
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4 23| 6 | 4 3
5 211 6 | 3 3
Stringers 6 12| 7 6 15
SKins 7 50 | 34 | 0.5 10
8 36 |31]04 5
MR S TR~ R BRI T SIS et 1 20 Spar B4 SVR
TRl %kt A E R 14682 % & 5 o BPN FEip| 2 Pz;w A28 14.825 % ~ > EwmIEip

% 4 Table 6 #777 -
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23k S418728% % o Frig A AR

Table 6 & B2+ AFFREE V- R(E = £ 2)
Parts Num | SVR results | BPN results
Spar 1 14.682 14.825

2 16.377 16.449
3 9.596 9.681
Ribs 4 7.461 7.614
5 6.407 6.534
Stringers 6 7.039 7.837
Skins 7 7.675 7.847
8 5.558 5.629

2Bl 7

413+ & 21 Wing-Box & %

= X

I3 3 & & fe > o iRl % (Table 7)8 7 i¢ *
% 7 3k 3= & 5403.058% ~ > ¢ * BPNFR P H-
; (DTC)rﬂ%‘bM i

AT E

Bk ERFS NS A

- BT 2 AR (T SVRE 2 e R R 8 BPN L dpd | i ehat & o
Table 7 %3+ & A B fefp Rl F v (HE = 1 2 1)

Parts SVR results | BPN results
Spar 122.541 123.452
Ribs 70.392 71.106
Stringers 105.585 117.555
Skins 104.54 106.615
Design Cost 403.058 418.728

Conclusion

k43 AR OTC)eAPL T 7 & % > 4 363 4 » it & = (Top-Down) & fi
5 1 (Botom-Up) i & & % A F HHER » 8T M7 5 R dost € % R S 0d o 540
TRESE 53 AR S A AR fTDTC?ﬁiE%‘L o i3 M Al ATERIS 2 hg M
3 %%%mrim P EE PR R T g%w AR« Tt ARG R B ES
Vo et g B F(SVR) S 6] EATH e (BPN) 55 D SURIE R YA S e
¥a)aE = X rIRIEEA 0 T ¥ %—;ﬁﬁgaggss = ;z R T TR e A A
4305 o

AR F ERR RG] - BB E S 2 Wing-Box® k TR F 2K A e ;{gr} Tp R
%R o mm A * SVRe BPN:E 7 71 iR m}r& WA 3% N o B ARSVRE
BPN%Ei?J'*%T AFHERFALE > b2 FFRIEAIP BPNF R0 5 R & kit

4 0 )



7 5BAF L aSVRE Z ATl 2 S8 £(C,yp,e) 0 T (7 B G IR
A o Fpl s IS RE P S *B’»,L@; LA SRR RIE B 5 A Rl o AT A KB E
Het 7 T R A DT SVREBPNA RIS RER v 0 T 0t %%dﬁw
HW WS 2K S 2R SEP A S A2 e X3 AR &8 P =+ FHis
2E YL AR

References

Bode, J. 1997. Decision support with neural networks in the management of research and
development: Concepts and application to cost estimation, Information & Management, 34: 33-40.

Carr, R. 1. 1989. Cost Estimating Principles, Journal of Construction Engineering and
Management, 115 (4).

Smith, A.E. and Mason, A.K. 1996. Cost Estimation Predictive Modeling: Regression versus
Neural Network, The Engineering Economist.

Mantel, S. J., Meredith, J. R., Shafer, S. M. and Sutton, M. M. 2005. Project Management in
Practice 2" Edition, Wiley.

Roskam, J. 1990. Airplane Design Part VIII: Airplane cost estimation: Design, Development,
Manufacturing and Operation.

Layer, A., Brinke, E. T., Houten, F. V., Kals, H. and Haasis, S. 2002. Recent and Future trends in
cost estimation, Computer Integrated Manufacturing, 15 (6): 499-510.

Parametric Estimating Handbook 4™ Edition, International Society of Parametric Analysis (ISPA),
2008.

Greese, R. C. and Li, L. 1993. Cost Estimation of Timber Bridges Using Neural Network, Cost
Engineering, 37 (5): 17-22.

Zhang, Y. F. and Fuh, J. Y. H. 1998. A Neural Network Approach for Early Cost Estimation of
Packaging Products, Comput Ind Eng, 34 (3): 433-450.

Murat, H. and Zeynep, S. 2004. A neural network approach for early cost estimation of structural
systems of buildings, International Journal of Project Management, 22: 295-602.

Vapnik, V. 1995. The nature of statistical learning theory, Springer.

Guo, G, Li, S. Z. and Chan, K. L. 2001. Support vector machines for face recognition, Image and
Vision Computing, 19: 631-638.

Zhang, W., Yoshida, T. and Tang, X. 2008. Text classification based on multi-word with support
vector machine, Knowledge-Based Systems.

Cai, Y. D,, Liu, X. J., Xu, X. B. and Chou, K. C. 2002. Prediction of protein structural classes by
support vector machines, Computers and Chemistry, 26: 293-296.

Vapnik, V., Golowich, S. and Smola, A. 1997. Support Vector Method for Function
Approximation, Regression Estimation, and Signal Processing, Advance in Neural Information
Processing System, 9: 281-287.

Tay, E. H. and Cao, L. 2001 Application of support vector machines in financial time series
forecasting, Omega, 29: 309-317.

4 0 )



Hua, Z., Wang, Y., Xu, X., Zhang, B. and Liang, L. 2007. Predicting corporate financial distress
based on integration of support vector machine and logistic regression, Expert Systems with
Applications, 33: 434-440.

Chen, K. Y. and Wang, C. H. 2007. Support vector regression with genetic algorithms in
forecasting tourism demand, Tourism Management, 28: 215-226.

Xi, X. C., Poo, A. N. and Chou, S. K. 2007. Support vector regression model predictive control on
a HVAC plant, Control Engineering Practice, 15: 897-908.

Smola, A. J. and Schoélkopf, B. 2002. Learning with Kernels — Support Vector Machines,
Regularization, Optimization, and Beyond, MIT Press, London.

Bertsekas, D. P. 1995. Nonlinear Programming, Belmont, MA:Athenas.
Gunn, S. 1998. Support Vector Machines for Classification and Regression, MIT press.
Haykin, S. 1999. Neural Networks — A Comprehensive Foundation 2" Edition, Prentice Hall.

Lewis, C. D. 1982. Industrial and Business Forecasting Methods : a practical guide to exponential
smoothing and curve fitting, Butterworth-Heinemann.

Niu, M. C. Y. 1988. Airframe Structural Design, Hong Kong: Conmilit Press.



http://scholar.google.com.tw/scholar?hl=zh-TW&lr=&oi=qs&q=scholkopf+%E4%BD%9C%E8%80%85:b-sch%C3%B6lkopf

BIOGRAPHY

Professor S.Deng received his Master and Ph. D degrees of Mechanical Engineering from North
Carolina State University, Raleigh, North Carolina, in 1994. Since then, he has been working for
Aeronautical Research Lab. (ARL) of Chung-Shan Institute of Science & Technology (CSIST),
and Center for Aero & Space Technology (CAST) of Industrial of Technology Research Institute
(ITRI). After working for these two main research centers in Taiwan, he then turned himself into
the college education. He was teaching in the Industrial Engineering Department of Da-Yeh
University, Taiwan as Associate Professor. He is currently Professor of the Power Vehicle and
Systems Engineering Department, Chung-Cheng Institute of Technology, National Defense
University of Taiwan. His major current research interests lie in several areas of Systems
Engineering and Project Management.

Mr. Tsung-Han Yeh received his Master degree in Department of Industrial Engineering and
Technology Management, from Da-Yeh University, Taiwan, in 2006, and presently pursuing his
Ph.D at Chung Cheng Institute of Technology, National Defense University, Taiwan. His research
areas include Machine Learning, Project Management and System Engineering, etc.




Applying Machine Learning Methods to the
Airframe Structural Design Cost Estimation — A
Case Study of Wing-Box Project

S. Deng Tsung-Han Yeh

Department of Power Vehicle and Systems  Graduate School of Defense Science,
Engineering, Chung-Cheng Institute of Chung Cheng Institute of Technology,
Technology, National Defense University National Defense University

sgdeng@ccit.edu.tw oasis.yeh@msa.hinet.net

Copyright © 2009 by S. Deng and Tsung-Han Yeh. Published and used by INCOSE with permission.

Abstract. This research used two machine learning methods, the Support Vector
Regression (SVR) and Back-Propagation Neural Network (BPN), to create the cost
prediction models for airplane wing-box structural design, and verified the feasibility and
efficiency for both methods. In the case study, four different main structural part groups of
the wing-box, Spars/Ribs/Skins/Stringers, were chosen. In the parts data base, the part
dimensions were included and used for classifying the part groups. Each part group has
150 bill of parts, 100 bill of parts used for training samples, 50 bill of parts used for
predicting samples, to test their accuracy. After verified through wing-box case study, the
results showed either SVR or BPN can precisely predicting the design costs. But
comparing with the BPN, SVR can get the global optimal solution while using less
decision parameters. This can save lots of time for searching the best parameters
combination when creating the prediction model.

Keywords: cost estimation, airframe structure, support vector regression, back-
propagation neural network

Introduction

The precision of cost estimation is essential for areas including project planning,
product development (Bode, 1997), as well as aeronautical industries. The data of cost
can be categorized into direct cost and indirect cost; direct cost refers to the cost
directly related to the manufacturing of the product, such as raw materials, equipments,
and wages; whereas indirect cost refers to the cost not directly related to the
production of the product, such as factory illumination cost, operation cost of
departments, and so on (Carr, 1989). Most of the cost prediction models for airframe
industries are developed using horsepower, weight, dimension and some other feature
parameters, that is so called Cost Estimation Relation (CER). However, the traditional
CER models are based on statistical regression model, which are not able to update the
estimation models instantaneously facing the fast-changing social factors (Smith &
Mason, 1997). Therefore, this research uses two machine learning methods, the
Support Vector Regression (SVR) and Back-Propagation Neural Network (BPN), to
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create the cost prediction models for airplane wing-box structural design, for the
purpose of providing efficient cost estimation methods for airframe industries.

Design to cost. In the early stage, aeronautical industries centred on Design to
Performance, which turned out to be costly. Therefore, how to efficiently control the
cost has become an important issue, and cost has become an important index besides
the schedule performance in terms of the success of product. Nowadays the
methodology of project cost estimation can be categorized as Top-Down and Bottom-
Up; in the former one the top management determines the budget and then allocates it
downwards to each level; whereas in the latter one the managers in each level estimate
the cost and then integrate it upwards. However, both methods estimate the cost
arbitrarily relying on the past experience, which may cause the failure of project due to
imprecise cost estimation.

In order to precisely plan and control cost before the execution of projects, a budget
threshold should be decided from the analysis and integration of the actual operating
cost for each segment, within which the project should be fulfilled. Therefore, the
concept of Design to Cost (DTC) is proposed. According to the document of U.S.
Department of Defense DoD5000.28, DTC is defined as a management concept to
fulfill the project with a pre-specified cost constraint through controlling the cost of
purchasing and logistics to achieve the tradeoff between the ability, performance, cost
and the progress. The industries used to determine the cost based on the product
specification, which neglected the consideration of cost constraint and usually caused
waste. In the recent years, following the international industrial trend, cost is the most
priority for manufacturing and operating, therefore DTC concept is employed. From
the perspective of project management, DTC is to design the product to fulfill the
requirement of performance with the constraint of the defined cost threshold; both
performance and cost are taken into account in the mean time. Taking U.S. as a
successful example employing DTC, NASA proposed the new idea of fulfilling the
planned target with cost limitations when executing the project of Mars Pathfinder-
Rover, which benefited NASA in cutting down the cost from 3 billion US dollars for
Viking-Mars Lander project in 1976 to 175 million US dollars for the new project,
total 94% cost savings. This case showed the international industrial trend has changed
from Design to Performance to Design to Cost to meet the appointed target (Mantel et
al., 2005).

Airframe LCC. Airframe Life Cycle Cost can be briefly divided into the following
parts: conceptual design, preliminary design, detailed design, manufacturing and
resembling, operating and logistics, and elimination. It is pointed out that, in Airframe
LCC, conceptual design, preliminary design and detailed design affect up to 95% of
the total cost. Although the actual cost rises dramatically from the stage of
manufacturing, in order to efficiently control the overall Airframe LCC, we need to
plan from the stage of conceptual design to minimize the total cost. When planning
Airframe LCC, according to Cost Breakdown Structure (CBS), airframe LCC should
be broken down into R&D cost, manufacturing cost, maintenance and warranty cost
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according to the time frame; it can also be broken down into cost of main body, cost of
power system, cost of weapon system, cost electronic system and so on, according the
structure of airframe. Among these, R&D cost can be further broken down into cost of
design, cost of materials, cost of test, and cost of equipment (Roskam, 1990). This
research will focus on the airframe structural design cost in the stage of R&D.
Currently there are cost estimation software available for different industries, the
representative ones including PRICE H, ACEIT, SEER H and COCOMO II. The
theoretical fundamental of the above cost estimation software are all Statistical
Parametric Regression (Parametric Estimation Handbook, 2008).

Cost Estimation Methods. Cost estimation methods can be divided into qualitative
methods and quantitative methods (Layer, 2002), and this research will only introduce
quantitative statistical parametric method. Most widely adopted method in statistical
parametric estimation is statistical regression analysis, which is the technique to model
and predict response variable (Y) with independent variable (x,X,,...,X;) and the

error term (&) using Least Square Method to determine the parameters in the linear

regression model (Parametric Estimation Handbook, 2008). For simple estimation
problems, linear regression model is adequate. However, as the estimation problem
becomes more complicated, it may cause poor performance only using independent
variables as input to forecast the response variable, which may lead to poor ability of
explanation. Therefore, the square and the interaction of independent variables should
be taken into account to establish second order estimation model. Statistical regression
estimation model can achieve good results when the parameters are relatively stable;
however, taking airframe manufacturing industry as example, the estimation model is
usually subject to the impact of inflation, growth of technology, change of process
capability and so on thus becomes imprecise. Thus the regression parameters need to
be revised and updated frequently to ensure the precision, which could be quite time-
consuming and costly. Therefore, traditional statistical regression estimation model is
not adequate to suit the change in the society.

Machine Learning Methods. In recent years, many scholars adopt Machine Learning
Methods to replace traditional Regression Analysis. The main concept of Machine
Learning is to mimic the process of human brain neurons learning and memorizing
through nervous system, also known as Artificial Neural Network (ANN), among
which the most representative one is Back-propagation Neural Network (BPN). It is an
iterative procedure to perform error back-propagation and adjust the weights to
minimize the error and eventually to obtain an optimal estimation model (Haykin,
1999). BPN has been widely applied in cost estimation problems in many aspects. To
name a few, Greese and Li (1993) apply Neural Network to cost estimation of Timber
Bridges and compare the results with traditional parametric estimation. Zhang and Fuh
(1998) apply BPN to develop early cost estimation model of packaging products.
Murat and Zeynep (2004) also apply Neural Network to early design cost estimation
of reinforced concrete structural systems of buildings.

Although Artificial Neural Network has been widely used in cost estimation problem
and performed efficiently, there are still several limitations. Many network parameters
are required when building the network, such as transfer function, the number of
hidden layer, and the number of neurons; it is time-consuming to determine the
network parameters in order to obtain a precise estimation model. ANN tends to be
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faced the local minimum problem when performing computation, therefore many
papers use the combination of heuristic algorithm and ANN in order to avoid the local
minimum problem. Besides, ANN lacks of a comprehensive mathematical theoretical
foundation, and the estimation model is quite complex.

In 1995, Vapnik and his research team in AT&T Lab developed a new machine
learning method, called Support Vector Machine (SVM). The theoretical foundation of
SVM is Vapnik-Chervonenkis Dimension Theory (VCD) based on Statistical Learning
Theory (SLT) and Structural Risk Minimization Principle (SRM). This principle
targets at minimizing the upper bound of estimation error (i.e. structural risk), whereas
ANN minimizes training error (i.e. empirical risk). Therefore, SVM can obtain the
optimal model by adjusting empirical error and VC dimension confidence interval.
SVM solves Quadratic Programming (QP) problem with linear constraints in the
training process. The meaning of solving QP is that the solution obtained by SVM is
the unique optimal solution, which can avoid the possibility of facing local optimal
problem. SVM was first applied to the classifying problem, developed from statistical
learning theory to learning method, from Simple Vector Classifiers to Hyperplane
Classifiers. This Classifier has been applied to many aspects, such as Face recognition
(Guo et al., 2001), text classification (Zhang et al., 2008), Biology technology (Protein
structural classification) (Cai et al., 2002) and so on, and performed efficiently.

In 1997, Vapnik et al. introduce e-insensitive loss function to maintain the sparseness,
in other words, to use less support vectors to represent the decision function. After that,
SVM starts to be widely used in non-linear estimation problems, which is called
Support Vector Regression (SVR). Many scholars have widely applied SVR to
estimation problems in many aspects. For example, Tay and Cao (2001) apply SVR to
financial time series analysis; Hua et al. (2007) integrate SVR and logistic regression
in predicting corporate financial distress; Chen and Wang (2007) integrate SVR and
genetic algorithms in forecasting tourism demand; Xi et al. (2007) apply SVR to
provide predictive control on a HVAC plant.

The purpose of this research is to apply machine learning methods to establish
airframe structural design cost estimation model. Both SVR and BPN are applied to
develop estimation models and the efficiency of them are compared. It is verified that
both SVR and BPN are feasible for cost estimation problems in the area of airframe
industry. The outline of the paper is as follows: in the introduction part, the importance
of cost estimation, the concept of DTC, airframe LCC structure, and the evolution of
cost estimation methods are discussed; the second part will introduce the theory of
SVR and BPN in machine learning methods; the third part is case study and result
analysis; and the last part concludes our research and proposes the future research
direction.

Methodology

Support Vector Regression. Support Vector Regression (SVR) is a technique to
forecast unknown change using available information, to establish estimation model
using training data, and to minimize the errors of training data and actual value
(Vapnik, 1995) (Smola, 2002). Given a data set S = (x,, y;) i =1...n, among which is
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X, the input vector, vy, is the target value, n is the sample size, then the objective

function is shown in (1). The basic concept is to map data x through ® non-linear
mapping function to high dimensional feature space to perform linear regression.

f(x)=®(x)-w+b (1)

In (1), w is the weight vector, b is the threshold value, @ is the high dimensional
feature space, that is, the non-linear mapping of input space x. Performing linear
regression in high dimensional feature space equals to performing non-linear
regression in low dimensional input space, except that we do not need to calculate
directly ®(x) and the integral mean value of w. Weight vector w represents the flatness
of the target function in high dimensional space; | w || is Euclidean Length, which is

the measurement of the flatness of the decision function or the complexity of the
model. After determining high dimensional feature space @, in order to make

f (x) flatter, ||w |f should be minimized. In the process of establishing regression

function following SRM, not every bill of training data contributes positively. There is
noise in the training data. For the noise which may affect the efficiency of SVR
estimation model, it should be dealt with using loss function integrated with penalty
parameter C. The main purpose of e-insensitive loss function is to examine the
distance between the regression function and the training data. If the distance between
the forecast value and the actual value is smaller than or equals to ¢, then the loss
function is 0; if it is greater than ¢, then the loss function is not 0.
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Figure 1. e-insensitive loss function

SVR adds positive slack variable to regularized risk minimization function, denoted as
&, in the mean time, when taking slack variable into account a penalty parameter
should be defined as the constraints to include the noise in the regression function, as
shown in (3).




Minimize : %MZ Y (e +¢) 3)
i=1
subjected to: y, —O(x;)-w—b<eg+ &

O(x,) w+b—y, <e+& i=l..n &,E =0

By Lagrange Multiplier optimization and taking decision function and constraints into
consideration (Bertsekas, 1995), (3) can be rewritten as Lagrange Function as shown
in (4):

n

L g+ Sl rs)-Sha vae)
_Zn:ai(5+§j_yi+(b(xi)'w+b) )

_Zn:a:(g-'"gi* -y, —O(x,) 'W_b)

i=1

In (4), .7 ¢, >0, all called Lagrange parameters. Optimal value exists in the
saddle point, where the partial differential of w,b,&,&" all equal to 0. Thus we have

(5):

a,L =w—Zn:(a,, —a:)xl =0
abL=Zﬁ:(al—a:)=0 (%)
i=1

0, L=C-a,-1,=0
0.L=Ca —p =0

(5) can be reformulated and integrated into (4), and solved by Lagrange dual
optimization, denoted as L, . Therefore the original problem to minimize L becomes

its dual problem to maximize L, as shown in (6).

Maximize © L, = %ii (af B (x:Xafj —a; )CI)(xI,)(D(xj) - gi (O"f + O‘:)Jr i)’f (ai - fx:)
i=1 j=1 i=1 i=1

subjected to: Z(a}. “a')=0and a,.c e[0.C] (6)

i=1

In (6), @(x;)®(x;)can be replaced by kernel function K(x;, x;)according to Karush

Kuhn-Tucher (KKT) conditions and solved as quadratic programming problem
(Bertsekas, 1995). From (5) we can obtain optimal value of w, as shown in (7). We
then can obtain (8) by integrating (7) into (1).
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1,.1_,'* = i(f}:‘j — (,'{; }D(.\}) (?)
i=1

f{x, &, ] = Z((:(,. -, )K(\ x,)+b (8)

i=1

In the end, we can obtain optimal b value according to complementary slackness
conditions, as shown in (9).
a(e+& =y, +D(x,)w+b)=0
a; (5 +& —y, —D(x,)w— b): 0
(C=) =0

(C - )3&7‘ =0

(9)

Kernel Functions. Commonly used kernel functions include three types, Linear
Kernel Function in (10), Polynomial Kernel Function in (11), and Radial Basis Kernel
Function (RBF) in (12) (Steve Gunn, 1998), shown as follows.

f((x!. X ] X, - \f (10)

|

f((‘\"i,_\rf_. ] = (l +x; -, )d (1)

k(x“_,xf_. ] = exp(— }f".\;. -, H] (12)

Each kernel function has its own kernel parameter, which should be specified when
building the estimation model. Adjusting Kernel parameters could affect the precision
of the final estimation model, therefore when using SVR, how to select kernel
parameters is an important issue. RBF is adopted in our research. In the recent SVR
related research, RBF are chosen if the problem is non-linear. The reason is that kernel
function itself is non-linear, which can transform from the original space to high
dimensional space to solve non-linear problem. When the raw data is non-linear, it can
perform efficiently. In addition, if the characteristic of raw data is not identified, using
SVR can generally guarantee a good result (Smola, 1998).

SVR Procedure. SVR procedure is shown in Figure 2, with the statement of each step
as follows:

Step 1 Data collection and scaling:

In this stage, raw data is preliminarily organized and scaled. The purpose of scaling is
to increase the accuracy of SVR estimation model, in the mean time, to restrict and
convert data into a specified interval. In many papers data is converted into (-1~1) or
(0~1). Then the data is split into training data and test data. Training data is used to
develop SVR model, whereas test data is used to verify the model and obtain the
estimation result and examine the performance.
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Step 2 Using Grid Search method to search for optimal parameter combination:

The parameter combination (C,y,&) should be determined when developing

estimation model using SVR, in which C is the penalty parameter; y is RBF kernel
parameter; ¢ is the loss function threshold. Selection of parameter combination directly
affects the precision of SVR estimation model; therefore in our research we use Grid
Search method to search for the optimal parameter combination in order to improve
the precision of estimation model. We apply Grid Search to the above mentioned
training data, use possible parameter combination to perform SVR computation to
determine whether it has reached the termination condition (in this research it is MSE
minimization). If not, we generate another set of parameter combination to iteratively
perform SVR computation until we achieve the optimal parameter combination.

Step 3 Developing SVR model:

We input optimal parameter combination to develop SVR estimation model, and use
test data to verify the performance of the model. From the performance criteria we can
know the precision and the future generalization ability of the model.

Data Collection

T

Data Scaling
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Train Data Test Data |

o === _________.

[ Grid Search ‘ X

J 1

Grid-Train Grid-Test |
[Jata Data
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[ Optimal parameter l |

Best SVR model |«
: |

Pertormance Critenia

Figure 2. SVR procedure

Back-propagation Neural Network. BPN belongs to supervised learning for
multilayer forward network, the main structure of which includes Input Layer, Hidden
Layer, and Output Layer, as shown in Figure 3. The computation procedure of BPN
can be divided into forward pass, error computation, and error back-propagation.
Statement of each stage is as below:
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Figure 3. BPN framework

Step 1 Forward pass: In (13), each unit (x;) in Input Layer is mapped to unit(y;) in
Hidden Layer with weight (v;)and propagation function (f); in (14), each unit

(y;) in Hidden Layer is mapped to unit(O,)in Output Layer with weight (w,;)and
activation function (f).

M
y, = f(net, =) v x) (13)
i=]
v
O, = f(net, = Z WyV;) (14)
j=1

Step 2 error computation: error function is defined and error of the output of the
network and the expectation is calculated; in (15), d, is the expected output; O, is the

forecasted network output.

R
E= zg(dk O) (15)

Step 3 error back-propagation: in this stage, if the error does not satisfy the
termination condition, then gradient descent method is used to update the weight of
unit propagation. n is gradient descent parameter. In (16), the weight mapping from
Hidden Layer to Output Layer is updated; in (17), the weight mapping from Input
Layer to Hidden Layer is updated. This process is repeated until termination condition
is satisfied, in other words, the error between the network output and the expected
output is minimized.

oF
w,.=w_+Aw, =w_—np——0 16
v~ Wy 5~ Wy an;g- (16)
oF

V=Vt Avﬁ =v,—7

o (17)

There are many parameters needed to be specified when using BPN to develop
estimation model. When using SVR, only (C,y,&) needs to be determined. Unlike
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SVR, when using BPN, we need to decide the number of neurons in Input Layer, the
number of Hidden Layer and the number of neurons in Hidden Layer, the number of
neurons in Output Layer, the neuron propagation function, training function, learning
function, and so on. Due to the large number of parameters, recent research all adopts
trial-and-error method to decide the feasible parameter combination. Therefore BPN
estimation model does not reach the optimal.

Performance Criteria. Performance criteria measure the efficiency of estimation
model obtained from SVR and BPN. The main idea is to compare the estimated value
with the actual output to verify the feasibility of the estimation model. This research
employs Mean Square Error (MSE) (18) and Mean Absolute Percentage Error (MAPE)
(19) to assess the models (Lewis, 1982). MSE and MAPE are used to measure the
difference between the actual value and the forecast value; smaller MSE or MAPE
means forecast value is closer to actual value. The function to calculate these two
statistics is listed as follows, where n is the sample size, y, is the actual value, and

y; 'is the forecast value.

MSE = iz (-3} a8
i-1
1 n

MAPE = — Z
n4

Vi~ Vi

<100% (19)

V.

v

Case Study

In this case study, assume that we want to plan and execute the structural design cost
of Wing-Box project, then the forecasting target is the design cost (Unit: US dollar).
The feature parameter affecting the target is the dimensions of the structural part,
including length, width, and thickness. The relationship between the design cost and
the dimensions can be represented by function as shown in (20). However, in past
practice, the structural cost data is recorded arbitrarily and there is a lack of estimation
model. This research attempts to develop an estimation model for structural design
cost with historical data using machine learning method.

Design Cost = f(Length, Width, Thickness) (20)
The structure of airframe can be divided into several parts, including fuselage, wing,
empennage, and the main component of the wing is Wing-Box, which can be further

divided into spar, ribs, stringers, skins, and so on. The historical data range of
structural part groups of wing-box is shown in Table 1 (Unit: Inch).

Table 1: Historical structural part data

Parts | Size | Range | Parts| Size| Range | Parts| Size| Range Parts Size Range
Spar L 15~50| Ribs| L | 10 25| Skins| L | 10~30| Stringers L 30~50
w 2~10 W | 5 10 W | 2~10 w 30~50
T 2~10 T 25 T | 2~10 T 01~1

After gathering the data range of the structural part groups of Wing-Box, this research
applies machine learning methods SVR and BPN to develop estimation model for each
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individual structural part group. Historical data used in this research is 150 bill, among
which 100 are used as training data, and the remaining 50 as test data.

The parameters of SVR and BPN should be specified during the process of model
construction. As for SVR, RBF is employed, and Grid Search method is used to search
the optimal parameter combination. Following the procedure of SVR, we can obtain
the performance of each individual structural design cost estimation model (MSE,
MAPE) and the corresponding optimal parameter combination (C,y,¢) . Under the

parameter combination (C=1024, y=0.25, £=0.0078125) for SVR estimation model,
structural part group Spar training stage MSE is 0.025; test stage MSE is 0.11; MAPE
is 2.436%. Under the parameter combination (C=1024, y=0.125, £=0.0078125) for
SVR estimation model, structural part group Ribs training stage MSE is 0.0002; test
stage MSE is 0.064; MAPE is 2.1064%. Under the parameter combination (C=1024,
v=0.25, €=0.0078125) for SVR estimation model, structural part Stringers training
stage MSE is 0.0015; test stage MSE is 0.155; MAPE is 2.078%. Under the parameter
combination (C=1024, y=0.25, £=0.0078125) for SVR estimation model, structural
part group Spar training stage MSE is 0.025; test stage MSE is 0.11; MAPE is 2.436%.
Under the parameter combination (C=1024, y=0.125, €=0.0078125) for SVR
estimation model, structural part group Skins training stage MSE is 0.0007; test stage
MSE is 0.05; MAPE is 3.0146%. The SVR computation result of different structural
part is shown in Table 2.

Table 2 SVR computation result

Parts Train Samples | kernel C Y & MSE | Test Samples | MSE | MAPE(%)
Spar 1024 | 0.25 | 0.0078125 | 0.025 0.11 2.436
Ribs 100 samples RBF 1024 | 0.125 | 0.0078125 | 0.0002 | 50 samples | 0.064 2.1064
Stringers per each part 1024 | 0.125 | 0.0078125 | 0.0015 | per each part | 0.155 2.078
Skins 1024 | 0.125 | 0.0078125 | 0.0007 0.05 3.0146

As for BPN parameter, the estimation problem in this case is to map three input
(structural part length, width, and thickness) to one output (design duration). The
number of Hidden Layer is set at 1; the number of neurons in Hidden Layer is set at 7
with past experience. Hyperbolic tangent linear propagation function is used;
Lavenberg-Marquardt network training function is used due to high convergence
speed. The number of iteration in the training stage is set at 1000; the termination
condition is set at 0.1, in other words, the training process will stop when the training
error converges to less than 0.1.

After this we perform BPN computation and obtain performance measure (MSE,
MAPE) for cost estimation model in training and test stage. For BPN estimation model,
structural part group Spar’s training stage MSE is 0.095; test stage MSE is 0.1156;
MAPE is 2.4803%. Structural part group Ribs’ training stage MSE is 0.085; test stage
MSE is 0.077; MAPE is 2.3917%. Structural part group Stringers’ training stage MSE
is 0.098; test stage MSE is 0.1696; MAPE is 3.1631 %. Structural part group Skins’
training stage MSE is 0.099; test stage MSE is 0.073; MAPE is 2.08%. The
computation result for BPN estimation model is shown in Table 3.
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Table 3 BPN computation result

Parts Train Samples | MSE | Test Samples | MSE | MAPE(%)
Spar 0.095 0.1156 2.4803
Ribs 100 samples | 0.085 | 50 samples 0.077 2.3917
Stringers | per each part | 0.098 | per each part | 0.1696 3.1631
Skins 0.099 0.073 2.08

We can see from the comparison of training and test results using SVR and BPN that,
SVR outperforms BPN in each structural part group. Using SVR structural part group
Spar’s MSE is 0.11, MAPE is 2.436%; whereas using BPN its MSE is 0.1156, MAPE
is 2.4803%. Using SVR structural part group Ribs’ MSE is 0.064 MAPE is 2.1064%;
whereas using BPN its MSE is 0.077, MAPE is 2.3917%. Using SVR structural part
group Stringers’ MSE is 0.155, MAPE is 2.078%; whereas using BPN its MSE is
0.1696, MAPE is 2.08%. Using SVR structural part group Skins’ MSE is 0.05, MAPE
is 3.1631%; whereas using BPN its MSE is 0.073, MAPE is 3.1631%. The comparison
of the testing result of SVR and BPN is shown in Table 4.

Table 4 Comparison of testing result of SVR and BPN after training

Parts Performance SVR BPN
Spar MSE 0.11 0.1156
MAPE(%) 2436 | 2.4803
Ribs MSE 0.064 0.077
MAPE(%) | 2.1064 | 2.3917
Stringe MSE 0.155 | 0.1696
s MAPE(%) 2.078 2.08
Skins MSE 0.05 0.073
MAPE(%) | 3.0146 | 3.1631

Until now we have completed development of cost estimation models for each
structural part group, following which we assume the dimensions and quantity of a
Wing-Box project. For example, we assume No. 1 Spar’s dimension is (L43, W5, T4),
quantity 5; No. 2 Spar’s dimension is (L38, W5, T5), quantity is 3. The detailed
dimension and quantity of structural part group are shown in Table 5.

Table 5 Dimension and quantity of Wing-Box structural part group

Parts Number | L [ W [ T | Quantity
Spar 1 43 | 5 4 5
2 381 5 5 3
3 25 | 7 4 3
Ribs - 23| 6 4 3
e 21 | 6 3 3
Stringers 6 121 7 6 15
h 7 50134105 10
Skins 8 [36[31]04 5

Applying the structural part data information to the estimation models we can obtain
the estimation result. For example, No. 1 Spar requires 14.682 US dollars based on
SVR cost estimation model, versus 14.825 US dollars based on BPN cost estimation
model. The detailed result is shown in Table 6.
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Table 6 Cost estimation result for individual structural part group (Unit: US dollar)

Parts Num | SVR results | BPN results
Spar 1 14.682 14.825
2 16.377 16.449
3 9.596 9.681
Ribs 4 7.461 7.614
5 6.407 6.534
Stringers 6 7.039 7.837
Skins 7 7.6'5 7.847
8 5.558 5.629

To sum up the cost for each individual structural part group we can obtain the total
design cost. As shown in Table 7, total structural design cost of the Wing-Box project
is 403.058 US dollars by SVR estimation model, and 418.728 US dollars by BPN
model. According to the concept of DTC, in order to achieve the target while
restricting the project cost within a certain threshold, SVR model performs better than
BPN model in terms of lower cost.

Table 7 Comparison of total design cost (Unit: US dollar)

Parts SVR results | BPN results
Spar 122541 123.452
Ribs 70.392 71.106
Stringers 105.585 117.555
Skins 104.54 106.615
Design Cost 403.058 418.728
Conclusion

In order to implement DTC concept for the project, in the past no matter whether we
choose Top-Down or Bottom-Up method to arbitrarily estimate the cost, it is not
sufficiently precise to guarantee the success of the project. Therefore, precise cost
estimation becomes the future trend to implement DTC. The traditional statistical
parametric cost estimation methods cannot response quickly or update immediately
facing the fast-changing international environment. Therefore, this research employs
machine learning methods SVR and BPN to develop cost estimation models through
training, testing and adjusting parameters, and demonstrates that machine learning
method is feasible and efficient developing airframe structural design cost estimation
model.

This research assumes a project to estimate the structural design cost of Wing-Box.
From the result it is shown that both SVR and BPN can guarantee the estimation
precision within 3%. Although there is no significant difference between the result of
SVR and the result of BPN, it takes more time to adjust parameters and perform trial-
and-error in developing BPN model. Instead, only kernel function and parameter
combination (C, y, ¢) are required for SVR to guarantee optimal cost estimation model.

Therefore, it is inevitable trend that machine learning methods replace conventional
statistical parametric method. Our future research will focus on comparison of
estimation precision of SVR and BPN when there is only a few training sample, and
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further discuss design cost estimation models for other parts of airframe,
manufacturing and resembling cost estimation, and eventually complete cost
estimation for airframe LCC.

References

Bode, J. 1997. Decision support with neural networks in the management of research
and development: Concepts and application to cost estimation, Information &
Management, 34: 33-40.

Carr, R. 1. 1989. Cost Estimating Principles, Journal of Construction Engineering and
Management, 115 (4).

Smith, A.E. and Mason, A.K. 1996. Cost Estimation Predictive Modeling: Regression
versus Neural Network, The Engineering Economist.

Mantel, S. J., Meredith, J. R., Shafer, S. M. and Sutton, M. M. 2005. Project

d
Management in Practice 2" Edition, Wiley.
Roskam, J. 1990. Airplane Design Part VIII : Airplane cost estimation : Design,

Development, Manufacturing and Operation.
Layer, A., Brinke, E. T., Houten, F. V., Kals, H. and Haasis, S. 2002. Recent and
Future trends in cost estimation, Computer Integrated Manufacturing, 15 (6): 499-510.

Parametric Estimating Handbook 4thEdition, International Society of Parametric
Analysis (ISPA), 2008.

Greese, R. C. and Li, L. 1993. Cost Estimation of Timber Bridges Using Neural
Network, Cost Engineering, 37 (5): 17-22.

Zhang, Y. F. and Fuh, J. Y. H. 1998. A Neural Network Approach for Early Cost
Estimation of Packaging Products, Comput Ind Eng, 34 (3): 433-450.

Murat, H. and Zeynep, S. 2004. A neural network approach for early cost estimation
of structural systems of buildings, International Journal of Project Management, 22:
295-602.

Vapnik, V. 1995. The nature of statistical learning theory, Springer.

Guo, G, Li, S. Z. and Chan, K. L. 2001. Support vector machines for face recognition,
Image and Vision Computing, 19: 631-638.

Zhang, W., Yoshida, T. and Tang, X. 2008. Text classification based on multi-word
with support vector machine, Knowledge-Based Systems.

Cai, Y. D., Liu, X. J., Xu, X. B. and Chou, K. C. 2002. Prediction of protein structural
classes by support vector machines, Computers and Chemistry, 26: 293-296.

Vapnik, V., Golowich, S. and Smola, A. 1997. Support Vector Method for Function
Approximation, Regression Estimation, and Signal Processing, Advance in Neural
Information Processing System, 9: 281-287.

Tay, E. H. and Cao, L. 2001 Application of support vector machines in financial time
series forecasting, Omega, 29: 309-317.

Hua, Z., Wang, Y., Xu, X., Zhang, B. and Liang, L. 2007. Predicting corporate
financial distress based on integration of support vector machine and logistic
regression, Expert Systems with Applications, 33: 434-440.

Chen, K. Y. and Wang, C. H. 2007. Support vector regression with genetic algorithms
in forecasting tourism demand, Tourism Management, 28: 215-226.

Xi, X. C.,, Poo, A. N. and Chou, S. K. 2007. Support vector regression model
predictive control on a HVAC plant, Control Engineering Practice, 15: 897-908.

4 0 )




Smola, A. J. and Schélkopf, B. 2002. Learning with Kernels — Support Vector
Machines, Regularization, Optimization, and Beyond, MIT Press, London.

Bertsekas, D. P. 1995. Nonlinear Programming, Belmont, MA:Athenas.

Gunn, S. 1998. Support Vector Machines for Classification and Regression, A/LIT press.
Haykin, S. 1999. Neural Networks — A Comprehensive Foundation 2n Edition,
Prentice Hall.

Lewis, C. D. 1982. Industrial and Business Forecasting Methods : a practical guide to
exponential smoothing and curve fitting, Butterworth-Heinemann.

Niu, M. C. Y. 1988. Airframe Structural Design, Hong Kong: Conmilit Press.




BIOGRAPHY

Professor S.Deng received his Master and Ph. D degrees of Mechanical Engineering
from North Carolina State University, Raleigh, North Carolina, in 1994. Since then, he
has been working for Aeronautical Research Lab. (ARL) of Chung-Shan Institute of
Science & Technology (CSIST), and Center for Aero & Space Technology (CAST) of
Industrial of Technology Research Institute (ITRI). After working for these two main
research centers in Taiwan, he then turned himself into the college education. He was
teaching in the Industrial Engineering Department of Da-Yeh University, Taiwan as
Associate Professor. He is currently Professor of the Power Vehicle and Systems
Engineering Department, Chung-Cheng Institute of Technology, National Defense
University of Taiwan. His major current research interests lie in several areas of
Systems Engineering and Project Management.

Mr. Tsung-Han Yeh received his Master degree in Department of Industrial
Engineering and Technology Management, from Da-Yeh University, Taiwan, in 2006,
and presently pursuing his Ph.D at Chung Cheng Institute of Technology, National
Defense University, Taiwan. His research areas include Machine Learning, Project
Management and System Engineering, etc.




	Native
Version
	English
Version

	Prev: 
	Next: 
	Close: 
	First: 


