Mathematics 415                              Final Exam                         Name:_________________________

                                                            Fall 2009

1.  This is an open-book, open-notes test.  That is, while solving the problems on this examination you may refer at any time to your textbook, Royden’s Real Analysis, or to the lecture notes you have taken for Math 415 this semester.
2.  You are to solve four problems - any two problems from section A and any two problems from section B.  Please circle the number of each problem that you solve and want me to grade.  All problems have the same value, 75 points, so the maximum number of points you can earn on this exam is 300.

Section A

1A.  For each positive integer 
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2A.  Let 
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 be a measurable real function on the closed interval 
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   (ii)  There is a positive real number 
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3A.  Let 
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Section B

4B.  Let 
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   (a)  Show that there exists 
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   (b)  Assuming the existence of a function 
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 with the properties of part (a), show that
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is a positive, finite measure on 
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   (c)  Show that if 
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 is a nonnegative function on 
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5B.  Let 
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 be a sequence of measurable, real functions on a measure space 
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  (Beware: This definition generalizes the notion given in Section 4.5, but it is different than that given in exercise 11.13 on page 262.)
   (a)  Show that 
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   (b)  Let 
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   (c)  Show by example that the converse of (b) does not hold in general.
   (d)  Let 
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   (e)  Show that the converse of (d) does not hold in general by giving an example of a finite measure space 
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   (f)  Show by example that the result in (d) may fail to hold if 
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   (g)  Show that if 
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 in measure, then there is a subsequence 
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6B.  Let 
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 be a measurable space.  Show that the set of all finite signed measures on 
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is a real Banach space.
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