Mathematics 315                           Final Exam, Part I                            Name:______________________

                                                          Spring 2007                                   (1 pt.)

This portion of the 200-point final examination is closed book/notes.  You are to turn in your solutions to this portion before receiving the second part.

1.(30 pts.)  (a) State Lebesgue’s Monotone Convergence Theorem.

   (b) Give an example to show that the conclusion of the Monotone Convergence Theorem need not hold for a pointwise decreasing sequence of nonnegative measurable functions.

   (c) State Lebesgue’s Dominated Convergence Theorem.

   (d) Give an example to show that the conclusion of the Dominated Convergence Theorem need not hold for a pointwise convergent sequence of integrable functions whose limit is an integrable function.

   (e) State Fatou’s Lemma.

   (f) Use the Monotone Convergence Theorem to prove Fatou’s Lemma.

2.(30 pts.)  (a) State Littlewood’s Three Principles.

   (b) State a rigorous version for each one of Littlewood’s principles.

3.(30 pts.)  In each of the following, compute the Lebesgue integral of 
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 over the set 
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 or show that 
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 is not integrable over 
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  Please justify the steps in your computations.
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Note. You may find Euler's identity useful:  
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Mathematics 315                           Final Exam, Part II                           Name:______________________

                                                          Spring 2007                                   (1 pt.)

This portion of the 200-point final examination is open book/notes.  You are to solve three problems of your choosing, subject to the constraint that at least one problem must be chosen from Group 1 and at least one problem must be chosen from Group 2.
Group 1.

1.(36 pts.)  Let 
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2, 3, 5, ...

ppp

===

 denote the (infinite) sequence of prime numbers, let 
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   (a) Show that 
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   (b) Show that 
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   (c) Use (a) and (b) to verify that 
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Assume that to each 
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   (d) Use (*) to help show that  
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   (e) Why does the improper Riemann integral  
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   (f) Use (c) and (*) to help show that
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2.(36 pts.)  Let 
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 be a continuous real function on the unit cube
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3.(36 pts.)  Consider the 
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   (a) Compute the Fourier series of 
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 with respect to the orthogonal set of functions 
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   (b) For each 
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 discuss the pointwise convergence (or lack thereof) of the Fourier series of 
[image: image44.wmf]f

 at 
[image: image45.wmf]x

 to 
[image: image46.wmf]().

fx


   (c) Discuss the uniform convergence (or lack thereof) of the Fourier series of 
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 to the function 
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   (d) Discuss the 
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   (e) Use the preceding to help compute the sums of  
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Group 2.
4.(36 pts.)  Let 
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   (a) If  
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   (b) Place an X  in each blank below that would imply 
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and an O in each blank otherwise.  Supply reasons for your answers.
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5.(36 pts.)  In this problem you may assume that the Riemann-Lebesgue Lemma holds for functions in 
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Let 
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   (a) Show that 
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   (b) Show that 
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   (c) Use (a) and (b) to help show that 
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6.(36 pts.)  Let 
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 be a bounded measurable function on [0,1] and define
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   (a) Show that 
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 is continuous on [0,1].

   (b) Show that 
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 is of bounded variation on [0,1].

In the rest of this problem, you may assume Lebesgue’s theorem for differentiation of monotone functions holds:  If 
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   (c) Why does 
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   (d) Show that 
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   (e) Show that 
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