Mathematics 315
Introduction to Mathematical Analysis

Qualifying Examination

September 2014
This is a three hour examination in which you may refer at any time to your textbooks for Math 315: Principles of Mathematical Analysis by Walter Rudin and Real Analysis by H.L. Royden and P.M. Fitzpatrick.  However, all other aids – books, lecture notes, homework and exam solutions, calculators, computers, smart phones, etc. – are NOT permitted.

This examination consists of six problems of equal value arranged in two groups.  You are to solve FOUR problems of your choosing, subject to the constraint that two problems must be chosen from Group A and two problems must be chosen from Group B.  The minimum score for a passing grade on this exam is 70 percent.

GROUP A
1.  Is the improper integral 
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 convergent or divergent?  Justify your answer.
2.  A sequence 
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 is called equidistributed if, for every continuous function 
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Show that 
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 is equidistributed in 
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 if and only if
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3.  Let 
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     (a) If 
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, show that 
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     (b) If 
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GROUP B
4.  Let 
[image: image23.wmf]X

 be the subset of the closed interval 
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 consisting of those real numbers 
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 such that, in the decimal representation of 
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 the first appearance of the digit 2 precedes the first appearance of the digit 3.  Show that 
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 is Lebesgue measurable and find its measure.
5.  Let 
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     (a) Show that we have the strict inclusion 
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     (b) Is it true that 
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?  If your answer is yes then prove it; if it’s no then give a counterexample.

6.  Let 
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 denotes Lebesgue measure.  Let 
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 denote the set of points that belong to infinitely many of the 
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  Show that 
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 is measurable and that 
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