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Supplemental Material

The time window for analyzing local shear-wave splitting (SWS) phases significantly
affects the quality of measurements, revealing a noteworthy domain influence. In this
study, an approach using convolutional neural network (CNN) is applied to determine
the end of time window (e), which has a similar idea of the phase-picking CNNs. The
start of time window is 0.5 s before e. Our data set contains 803 human-labeled mea-
surements, recorded from three stations located in Ridgecrest, California. These mea-
surements are foreshocks and aftershocks of an M 7.1 earthquake on 6 July 2019. After
21 times shifting on each measurement, 90% of the data set is applied as the training
data set, with the remaining 10% as the testing data set. The performance of CNN with
the testing data set is compared with a nonmachine learning method, multiple filter
automatic splitting technique (MFAST). The results reveal that the CNN yields more sim-
ilar results with human-labeled outcomes than MFAST, as evidenced by lower absolute
error and standard deviation for e, SWS time, the orientation of fast-wave polarization,
and more consistent results on the map. The CNN also performs well when applied to
data recorded by a station in Parkfield, California. This study shows the outstanding
performance of CNN in picking the time window and the reliable automatic determi-
nation of this time window, and it is also a crucial step for future development of auto-
matic ranking methodologies.

Introduction
Seismic anisotropy leads shear waves to turn into two orthogo-
nally polarized waves with distinct velocities, epitomized as
shear-wave splitting (SWS; Ando et al., 1980). This SWS
reveals as a direct indication of azimuthal anisotropy, quanti-
fied by the fast-wave’s polarization orientation (ϕ) and the time
difference between fast- and slow-wave arrivals (δt) (Silver and
Chan, 1991). Different regions of the Earth exhibit hetero-
geneous conditions leading to SWS due to varying anisotropic
properties. In the upper continental crust, previous studies
proposed stress-induced anisotropy emerges from fluid-filled
microcracks preferentially aligning with the direction of maxi-
mum horizontal compressive stress, and structure-induced
anisotropy is attributed to fluid-filled fractures adjacent to fault
zones, terrane minerals, and sedimentary layering. These
anisotropic properties are typically quantified by ϕ and δt
of S wave from local seismic events (Crampin and Booth,
1985; Cochran et al., 2003, 2020; Crampin and Gao, 2006;
Yang et al., 2011; Li and Peng, 2017; Cao et al., 2019; Gao
et al., 2019; Jiang et al., 2021; Guzman et al., 2022; Jia, 2022).

Given the focus on local seismic occurrences in these proj-
ects, the threshold for minimum magnitude is notably low,

resulting in a large number of events within the study area.
With rapidly increasing number of stations, there is an expo-
nential surge in the volume of measurements. This increased
data set consequently intensifies the time and effort required
for manual verification (Jiang et al., 2021; Jia, 2022). Despite
significant advancements toward semi- and fully automatic
methods of such processes as noted by Gao et al. (2006),
Peng and Ben-Zion (2004), and Savage et al. (2010), manually
verified results undeniably present superior quality, enabling
more robust and confident analysis of each individual meas-
urement (Jiang et al., 2021; Jia, 2022).

In recent years, applications of machine-learning (ML)-
based techniques on various scientific problems have dramati-
cally increased, and over-human performance has been shown
in diverse areas (Silver et al., 2016; Linville et al., 2019). Zhang
and Gao (2022) developed a convolutional neural network
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(CNN) to rank SWS measurements of teleseismic (quality and
type of measurements) and revealed great potential in this task.
Without a precisely determined ending window for the PKS,
SKS, and SKKS phases, CNN still delivers results more similar
to manual outcomes than non-ML automatic ranking methods
(Link et al., 2022; Zhang and Gao, 2022).

For local SWS measurements, due to the narrow time win-
dow of the S phases, the selection of time windows for analyz-
ing S phases profoundly impacts the measurement quality,
highlighting a significant domain influence. Without a well-
determined time window, subsequent methodologies for calcu-
lating splitting parameters, such as the minimum energy
method, cannot provide reliable outcomes (Silver and Chan,
1991; Liu and Gao, 2013). Consequently, an automated
method for accurately selecting these time windows is essential
for the autoranking of local SWS measurements. In this study,
we utilize a CNN to determine the end of the time window (e),
drawing parallels with phase-picking CNN methodologies
(Zhu and Beroza, 2019). The exclusive focus on determining
the e is attributed to its narrow acceptable range. In contrast,
the start of the time windows has a broader acceptable range
(Peng and Ben-Zion, 2004; Teanby et al., 2004), and for our
purposes, we have designated it as 0.5 s before e.

Data and Methods
Our study utilizes a data set containing 803 measurements
recorded from three broadband stations located in Ridgecrest,
California. The active fault network primarily consists of the
northwest–southeast-striking Eastern Little Lake fault, the

northeast–southwest-striking Southern Little Lake fault, and
several additional faults (Jia, 2022). These measurements
are from the foreshocks and aftershocks of a magnitude 7.1
earthquake that occurred on 6 July 2019. The measurements
are manually picked the time windows of S phases and analyzed
in Jia (2022), and magnitude varies from 0.0 to 4.9. A 4 s win-
dow, centered at the theoretical S-wave arrival time with a sam-
pling rate of 0.01 s, is employed to segment three-component
seismic records and each measurement is processed using a
0.5–10 Hz band-pass filter. To enhance our data set, each meas-
urement is randomly shifted 20 times in the range of ±0.2 s,
resulting in a total of 16,863 measurements, including the origi-
nal ones (Shorten and Khoshgoftaar, 2019). Recognizing the
inherent variability of e, a Gaussian distribution is employed
as a mask centered around the human-labeled e, recognizing
that e can be defined within a certain range. The same masking
technique was previously employed by Zhu and Beroza (2019)
to reduce the effects of human mispicking errors. After random
shuffling, 90% of the data set is applied as the training data set,
with the remaining 10% as the testing data set.

As inspired from previous studies, a 12-layer U-shape CNN
is designed to determine the e of each measurement (Table 1;
Perol et al., 2018; Zhu and Beroza, 2019). The input to the CNN
consists of a three-component seismic record, and the output
provides the probability of e for each individual data sample
(Fig. 1). The 1D convolutional layers (Conv-1D) extract and
shrink the useful features from the input data set, and the
1D deconvolutional layers (Deconv-1D) expand the information
to fit the data shape of the output. The data length is reduced by
half after each Conv-1D and doubled after each Deconv-1D.
The activation function between each layer is LeakyReLU with
a 0.05 negative slope (Maas et al., 2013) and the activation func-
tion of output is Sigmoid (Han and Moraga, 1995):

σ � 1
1� e−x

, �1�

in which x is the value of each data point. Based on equation (1),
the CNN gives a value (σ) from 0 to 1 at each data point,
representing the possibility of e at each data point.

As each data point can be considered as a binary classifica-
tion problem, the binary cross-entropy loss is employed as loss
function:

L� −
1
n

Xn

i�1

yi log�p�yi��� �1− yi� log�1−p�yi���n� 400�, �2�

in which n is the number of data points, y is the real mask, and
p(y) is the CNN-predicted results. The optimizer is the Adam,
a typical gradient descent method in ML (Kingma and Ba,
2014), with a learning rate of 0.001 and an epoch of 10.

Results
After training, the testing data set is employed to assess the
performance of our CNN. The e is identified at the maximum

TABLE 1
Structure of the Convolutional Neural Network (CNN)

Layers Length Depth
Kernel
Size Stride

Activation
Function

Input 400 3 – – –

Conv-1D 200 64 3 2 LeakyReLU

Conv-1D 100 64 3 2 LeakyReLU

Conv-1D 50 64 3 2 LeakyReLU

Conv-1D 25 64 3 2 LeakyReLU

Conv-1D 13 64 3 2 LeakyReLU

Conv-1D 7 64 3 2 LeakyReLU

Deconv-1D 13 64 3 1 LeakyReLU

Deconv-1D 25 64 3 1 LeakyReLU

Deconv-1D 50 64 3 1 LeakyReLU

Deconv-1D 100 64 3 1 LeakyReLU

Deconv-1D 200 64 3 1 LeakyReLU

Deconv-1D
and output

400 1 3 1 Sigmoid
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Figure 1. Process of convolutional neural network (CNN). The
input is three-component seismic waveforms (Z, N, and E). The

output is the probability of e at each point (P). The color version
of this figure is available only in the electronic edition.

Figure 2. Comparison scatter plot of multiple filter automatic
splitting technique (MFAST) and CNN test data set outcomes
versus human evaluations. (a,d) Results of e. (b,e) Results of δt

based on window in panels (a) and (d). (c,f) Results of ϕ based on
window in panels (a) and (d).
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σ of the output, and the start of the time window is set at
0.5 s before e. The technique of minimizing the lesser of
the two eigenvalues of the covariance matrix of the seismo-
grams after the correction for anisotropy is employed to cal-
culate the δt and ϕ of each measurement (Silver and Chan,
1991). It simultaneously searches for the two splitting param-
eters and the polarization orientation of the shear wave.
Consequently, the radial and transverse components are
calculated relative to the optimal polarization orientation.
As revealed in Figures S1 and S2, available in the supplemen-
tal material to this article, the measurements processed using
the CNN-picked time window display features similar to the
A and B quality proposed by Liu and Gao (2013). These
include pronounced S-wave arrivals on the horizontal com-
ponents, effective removal of energy on the transverse com-
ponent, elliptical particle motion patterns in the original
measurements that become approximately linear after correc-
tion, and a well-defined minimum energy contour on the
transverse component. In addition, the measurements exhibit
similar features when compared to those based on human-
picked time windows.

In Figure 2a–c, the results of the testing data set based on
both the CNN- and human-picked time window are plotted to
discern their similarity and difference. Remarkably, the CNN
mirrors human precision across all parameters: e, δt, and ϕ.
The quantitative differences in the results are minimal as well,
with average errors of 0.02309 s for e, 0.00519 s for δt, and
8.54321° for ϕ. The SWS measurements serve as a potent tool
to analyze spatial anisotropy within the investigation area.
Hence, visualizing the distribution of these measurements
on a map is necessary. In Figures 3a,b and S3a,b, when the
measurements derived for the CNN-picked time window
are compared with those from the human-picked time win-
dow, a coherent trend emerges. Both sets of results exhibit con-
sistent spatial distribution, further underscoring the accuracy
of our CNN in mimicking human precision when plotted
across both station and event locations.

Discussion
Comparison with a non-ML method
Over the years, various non-ML techniques have been devel-
oped for the fully automated ranking of local SWS measure-
ments (e.g., Peng and Ben-Zion, 2004; Savage et al., 2010).
For the purpose of comparative analysis in this research, we
choose a widely recognized method, multiple filter automatic
splitting technique (MFAST) (v.2.1, do_sta_verylocal, Savage
et al., 2010), to compare against the CNN-based approach pro-
posed in this study. Similar to other non-ML methods, MFAST
requires measurements with picked S arrivals and selects a time
window surrounding the S arrival time by employing shifting
windows (Peng and Ben-Zion, 2004; Savage et al., 2010). To
fully automate this process, we leverage PhaseNet (model =
“ai4eps/phasenet,” Zhu and Beroza, 2019), a prevalent

Figure 3. Plotting all measurements in the testing data set at event
location. (a) Results based on human-picked time window.
(b) Similar to (a) but based on CNN-picked time window. (c) Similar
to (a) as well but for MFAST. The red bars are recorded by station
CA01xx_GS, the green bars are recorded by station CA03xx_GS,
and the blue bars are recorded by station CA06xx_GS. The gray
lines are faults. The red star in inset of panel (a) labels the study
area in California, United States. The color version of this figure is
available only in the electronic edition.
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ML-based approach for phase picking, to initially discern the S
arrival time. Utilizing a threshold value of 0.50, PhaseNet suc-
cessfully picks 70 measurements in the testing data set, and
thenMFAST selects the time window based on PhaseNet’s out-
comes. MFAST uses a broader band-pass frequency range (e.g.,
1–8, 1–15, and 1–30 Hz) than ours. However, all the frequency
ranges used by MFAST and this study include the vast majority
of the shear-wave energy; therefore, the difference in frequency
bands is unlikely leading to a biased comparison. For optimal
performance, the best band-pass filter, determined by MFAST,
is utilized rather than employing a fixed filter used in the CNN.
To ensure inclusion of all measurements, the signal-to-noise
ratio threshold is set to 0 for MFAST; otherwise, with the
default threshold of 2.0, only seven measurements from the
test data set are selected. Finally, MFAST still rejects one meas-
urement and picks the time window for 69 measurements.

As with earlier comparisons, the results of MFAST against
with human’s outcome are illustrated in Figure 2d–f. The
distribution of these results exhibits greater dispersion than
outcomes derived from the CNN. Additionally, the quantita-
tive differences are more pronounced, with average errors of
0.197 s for e, 0.043 s for δt, and 24.174° for ϕ. When mapping
the measurements based on the MFAST-picked window,
Figure 3 and Figure S3 makes it evident that measurements
leveraging the CNN-picked window align more consistently
and bear a closer resemblance to the human-picked results.

Application to data from Parkfield, California
Because of the lack of human-labeled data sets in local SWS
measurements, the data recorded by station BURN (network
code: YH) in Parkfield, California, are manually checked to
evaluate the performance of CNN. The station is a part of
the Parkfield Area Seismic Observatory array. The main purpose
of this array is to enhance the precision in pinpointing the
locations of Microearthquake along the San Andreas faults.
Ultimately, 302 goodmeasurements are obtained using manually
selected time windows of the S phase. The CNN is then applied
to determine the e values for these measurements, and the asso-
ciated splitting parameters are calculated (Fig. S4). The results
derived from both human and the CNN are visualized on a
map as well. As depicted in Figure 4 and Figure S5, the results
of CNN exhibit a high degree of consistency with human results,
distinguished only by minimal discrepancies. The station
averaged δt and ϕ from human analyses are 0.045 ± 0.010 s
and 166.414 ± 22.737°, respectively. For CNN, they are 0.046
± 0.013 s and 165.424 ± 21.126°, respectively. These findings
are also consistent with those of a previous study, which reported
a δt of 0.053 ± 0.053 s and a ϕ of 174° (Liu et al., 2008).

Start of time window
Although the start of the time window offers a broader accept-
able range, it retains significant influence in removing interfer-
ence of P and P-coda waves while ensuring that the entirety of

the S phases is captured. In our study, a selection of 0.5 s before
e is made based on a thorough empirical examination of all
measurements. This choice proves to be compatible with all
the measurements in the testing data set.

Nevertheless, it is essential that an optimal start of the time
window is better varying based on the specific attributes of
individual measurements, especially the depth of event and
the distance between event and station. Within our data set,
event depths range from 3.1 to 14.4 km, and distance between
events and stations range from 0.7 to 14.1 km with the

Figure 4. Same as Figure 3 but for measurements from station
BURNxx_YH. The measurements are plotted at the event epi-
centers. (a) Results obtained based on human-picked time
windows. The gray lines are faults, and the red star in the inset
map labels the study area in California, United States. (b) Results
obtained based on CNN-picked time windows. The color version
of this figure is available only in the electronic edition.
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maximum incident angle approximately 35°. For shallower and
closer events, the start of the time window should be closer to e
to negate the impacts of P and P-coda waves. Conversely, for
events with greater depth and distance, the start of the time win-
dow ought to be distanced further from e, ensuring the complete
capture of the S phases.

Fully automatic ranking measurements with ML
The precise determination of the S phase time window plays an
important role in ensuring the quality of measurements. This
precision directly impacts the reliability of the splitting param-
eters (δt and ϕ) associated with those measurements. Notably,
energy minimization on the corrected transverse component
when using an accurate time window serves as a clear feature
that can be beneficial for future ML-based automatic ranking
approaches (Liu and Gao, 2013; Zhang and Gao, 2022). After
accumulating more measurements, and once a reliable time
window is applied, another CNN can be designed for ranking
the measurements. Drawing parallels with the approach of
Zhang and Gao (2022), the input of CNN can comprise the
original and corrected radial and transverse components,
whereas the output can be the possibility of measurements
being acceptable.

Conclusions
In this study, a CNN is developed specifically for picking e, the
end of the time window for local SWS measurements, with that
start of time window set at 0.5 s before e. Utilizing a published
human-labeled data set as our benchmark (Jia, 2022), we trained
and tested the CNN, using data from a different area to evaluate
its performance. Our findings underscore that the outcomes
derived from the CNN closely mirror the results of human
and outperform traditional non-ML approach. The CNN exhib-
its lower average errors across δt and ϕ. This robust perfor-
mance accentuates the potential of CNN on this task. The
accurate determination of the S phase time window facilitates
experts’ precision and efficiency in manually ranking local
SWS measurements and also lays foundational groundwork
for a future fully automated ML-based measuring and ranking
system for SWS parameters.

Data and Resources
The code and trained models utilized in this study can be accessed at
GitHub (https://github.com/YW-Zhang94/CNN_Local_SWS_f), and
the data sets are available at Figshare (https://figshare.com/articles/
dataset/CNN_Local_SWS_f/24714855). Both websites were last
accessed in December 2023. The supplemental material for this article
includes examples of measurements for comparing the outcomes
obtained by humans and those generated by the CNN.
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