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ABSTRACT
Convolutional neural networks (CNNs) have gained popularity in geophysical research due
to their exceptional performance in various areas. However, achieving reliable results with
CNNs typically requires a significant amount of high-quality data for training. In this study,
we develop a CNN to classify natural earthquakes, mine collapses, and explosions using seis-
mic waveforms from 287 stations in Shandong Province, China. The dataset comprises 1035
earthquakes, 159 mine collapses, and 586 explosions. To address the impact of unreliable
measurements, we employ cross validation to screen, manually correct, or discard measure-
ments with inconsistent labels assigned by human experts and CNN. By refining the dataset
through thesemethods, classification accuracies for the three event types improved substan-
tially, reaching over 95%. Notably, CNN outperforms human classification in this task, with
its performance heavily influenced by the quality and distribution of the training dataset.
Our research demonstrates the potential of CNNs for classifying seismic eventswhile empha-
sizing the crucial role of human-in-the-loop feedback and the significance of cross-validation
techniques in ensuring the accuracy and reliability of the CNN model.

KEY POINTS
• Convolutional neural network (CNN) is powerful for

classification of natural earthquakes, mine collapses, and

explosions.
• Dataset quality and distribution strongly impact CNN

model accuracy and reliability.
• Cross validation and human-in-the-loop techniques

enhance accuracy and reliability of training dataset.

INTRODUCTION
The ever-increasing demand for mineral products in contempo-
rary society has led to a marked rise in nontectonic seismic
events, such as mine collapses and explosions. Consequently,
the accurate classification of natural earthquakes, collapses,
and explosions has emerged as a formidable challenge in the
field of applied seismological research (Astiz et al., 2014). The
task of distinguishing between these event types is particularly
challenging, as their waveforms can exhibit significant overlap,
making it difficult to differentiate between them using tradi-
tional signal processing techniques. Furthermore, the classifica-
tion process requires a high level of accuracy to help government
departments respond differently to different events.

Over the years, a range of different automated and semiau-
tomated techniques have been developed to classify seismic
sources based on the characteristics of their waveforms. Fäh
and Koch (2002) compared the ratios between P and S phases
with different time windows and frequency bands to differen-
tiate between earthquakes and chemical explosions. In addition,
the Lg and Rg phases have been analyzed to classify various
source types (Baumgardt and Young, 1990; O’Rourke and
Baker, 2017). These studies have demonstrated that seismic
waveforms can contain significant information about their
sources, but the effectiveness of waveform-based methods is
strongly influenced by a variety of factors, including the depth
and distance of the event, the environment in which it occurred,
and other potential sources of noise. Given the lack of clear and
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consistent characteristics that can differentiate between the
waveforms produced by earthquakes, mine collapses, and explo-
sions, the classification of these types of events has traditionally
been performed by experienced human analysts who can use
their knowledge and expertise to identify key features and make
accurate determinations about the source of each seismic signal.

Based on previous studies and empirical experience, seis-
mologists commonly categorize seismic events such as earth-
quakes, explosions, and collapses using several key parameters.
These include dominant frequency (normally lower frequency
for collapses), the ratio of P-wave to S-wave energy (normally
greater P-wave energy for explosions), the duration of the
event (normally longer duration for earthquakes), the polari-
zation direction of the initial arrival (depending on event
type and back azimuth), and characteristics of surface waves
(normally more clear surface waves for earthquakes and explo-
sions) (Fig. 1) (Baumgardt and Young, 1990; Kim et al., 1997;
Fäh and Koch, 2002; O’Rourke and Baker, 2017). However, it is
crucial to recognize that in different geological settings, some
events may display overlapping features, which can make
classification more challenging.

In recent years, the use of high-performance machine
learning (ML) techniques in geophysics has gained significant
attention from researchers. Among the ML techniques, the
convolutional neural network (CNN) has emerged as a widely
used tool in solving classification problems based on seismic
waveforms, owing to its remarkable feature extraction ability.
The potential of CNNs in seismic event classification has been
demonstrated in numerous studies, including those by Perol
et al. (2018), Linville et al. (2019), Zhang and Gao (2022),
and Barama et al. (2023). However, it is essential to have a large
quantity of high-quality data for training the CNNs to obtain

reliable results. Some earlier studies have pointed out that sig-
nals with mislabeled and ambiguous measurements are often
present in human-labeled datasets (Zhu and Beroza, 2018;
Garcia et al., 2021; Zhang and Gao, 2022). These contaminated
datasets can negatively impact the results of CNN-based clas-
sifications. Linville et al. (2019) reported that over 50% of
events with different labels between CNNs and humans were
mislabeled by human analysts. This situation could potentially
be attributed to various factors, including typing errors and/or
the limited expertise of a beginning operator. As a matter of
fact, it is commonly recognized in the ML community that
the quality of the utilized dataset is as critical as the model
(Chen et al., 2021; Gong et al., 2023). The inclusion of low-
quality measurements in the training dataset can compromise
the training process and adversely affect the performance of
CNNs. In addition, previous studies revealed that the perfor-
mance of ML methods exhibited minimal discrepancies across
different methods and models in seismic classification projects
(Linville et al., 2019; Wang et al., 2023). Consequently, we aim
to address the issue at the dataset level.

In this study, we have aimed to develop a more accurate
and reliable CNN model for the classification of three types
of seismic events: tectonic earthquakes, mine collapses, and
explosions. To achieve this, we acquired a human-labeled data-
set from the Shangdong Seismic Network Center (SSNC) in

Figure 1. Three types of seismic events are demonstrated by the following
examples: (a,d,g) three-component traces of an earthquake recorded at
station PENL during event 20170922055. (b,e,h) A collapse captured at
station ZCH during event 201710272144. (c,f,i) An explosion recorded at
station LZH during event 201805031120.
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China. However, we have found that such datasets may contain
unreliable or ambiguous measurements, which can negatively
impact the performance of CNN. Therefore, we have employed
a tenfold cross-validation method to scan the entire dataset
and minimize the influence of these measurements. The
measurements with different labels, provided by both humans
and CNN, have been carefully evaluated, and a decision has
been made to either keep, correct, or abandon them in the
dataset. The resulting CNN model with eleven layers has
shown significant improvements in classification accuracies
for all three types of events. Specifically, the classification accu-
racy increased from 97.3% to 99.2% for earthquakes, from
84.9% to 95.8% for mine collapses, and from 93.7% to 98.1%
for explosions. Our study emphasizes the importance of reli-
able datasets and demonstrates that cross validation can effec-
tively evaluate and improve the performance of ML methods.

DATA AND METHODS
The seismic waveform dataset used in this study is provided by
the SSNC and covers a period of over four years, from August
2017 to January 2022. The dataset comprises a total of 31,754
three-component waveforms that were recorded by 287 seis-
mic stations including 4,410 events, as illustrated in Figure 2.
To categorize each waveform correctly, human experts man-
ually picked the P-wave arrival time and assigned it to one
of the three categories: earthquake, collapse, or explosion.
The earthquake frequency–magnitude distribution is estimated
by applying the magnitude of completeness (Mc) determina-
tion method developed by Cao and Gao (2002). The dataset
from the SSNC has anMc-value of 1.5. This value suggests that
the SSNC is capable of detecting all seismic events with mag-
nitudes equal to or exceeding 1.5. Thus, we have filtered out all
events with magnitudes lower than 1.5 to ensure the complete-
ness and reliability of our dataset. After filtering, 17,557 seismic
velocity waveforms are retained for further analysis, including
11,901 waveforms from 1,035 earthquakes, 1,511 waveforms
from 159 collapses, and 4,145 waveforms from 586 explosions.
To standardize the data, detrending and normalizing are per-
formed, and the time window of 10 s before and 40 s following
each P-wave arrival time is used. In addition, the sampling
interval is set to 0.01 s, and zeros are appended to waveforms
that do not have sufficient length. Because CNNs cannot be
fully understood, we chose not to apply filters to the wave-
forms, preserving all the original information to allow CNN
to learn more features for this task.

In our dataset, there is a significant imbalance in the num-
bers of waveforms among the different events, which could
lead to bias toward the majority class during the training proc-
ess (Goodfellow et al., 2016). To address this issue, we employ a
common approach of setting different class weights for differ-
ent event types (He and Garcia, 2009; Zhang and Gao, 2022).
Specifically, we set the class weights as 1 for earthquakes, 8 for
collapses, and 2.5 for explosions based on the ratio between

numbers of waveforms corresponding to each event type.
One-hot encoding is used to label each type of event, where
each event is represented by an array with three elements, cor-
responding to earthquakes, collapses, and explosions, respec-
tively (Goodfellow et al., 2016). The earthquakes are labeled as
[1, 0, 0], the collapses are labeled as [0, 1, 0], and the explosions
are labeled as [0, 0, 1].

Based on practices from previous studies, we established
a CNN with 10 convolutional layers and 2 fully connected layers
using Keras (Gulli and Pal, 2017) (Fig. 3). The inputs are 5000-
node three-component seismic waveforms, and after convolu-
tion, the outputs are the probabilities of the three types of events.
The activation function between each layer is LeakyReLU with a
0.05 negative slope (Maas et al., 2013). During the convolutional
process, 3-by-1 filters are applied to extract features from the
seismic waveforms. The stride is set to 2, so the length of each
layer is down-sampled to half of the previous length. Softmax is
used as the activation function to classify each seismic waveform
in the output layer (Goodfellow et al., 2016):

p�x�i �
exiP
3
j�1 e

xj
, �1�

in which x represents each node in the final layer of CNN, j = 1,
2, 3 and i = 1, 2, 3 represent the three nodes of the last layer, and
p�x�1, p�x�2, and p�x�3 represent the probabilities of earth-
quakes, collapses, and explosions, respectively. The result of
the CNN follows from the highest value of p(x).

The cross entropy between the human-labeled and
CNN-predicted results is defined as the loss function of our
CNN (Goodfellow et al., 2016):

L � −
Xn

i�1

pi log�qi�, �2�

in which n is 3, representing the three types of events (earth-
quakes, collapses, and explosions), p is the probability of the
CNN-predicted result given by the softmax function, and q
is the human-labeled result. The weights of the filters and fully
connected layer are automatically optimized by minimizing the
loss function during the training process. The optimizer is
Adam with a learning rate of 0.001 (Kingma and Ba, 2014),
and the number of epochs is 32.

RESULTS
Results with original dataset
Initially, we conduct tenfold cross validation to explore the
entire dataset. The complete dataset is uniformly divided into
ten groups, where each group is used as the testing dataset in
each of the ten iterations. The remaining nine groups serve as
the training dataset in each iteration. In each iteration of cross
validation, a new model is trained independently of the model
trained on the previous iteration. Because the same event can
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be recorded by multiple stations, we employ the majority vot-
ing algorithm to determine each event at the network level. The
output of each event is obtained by summing the outputs of all
the stations that record the corresponding event. Ultimately,
our CNN model successfully identifies 97.3% (1007/1035) of
the earthquakes, 84.9% (135/159) of the collapses, and
93.7% (549/586) of the explosions (as depicted in Fig. 4a,c,e,
respectively). For the comparison at the station level, our
CNN model successfully identifies 92.3% (10,982/11,901) of
the earthquakes, 80.7% (1,219/1,511) collapses, and 83.1%
(3,443/4,145) explosion.

The seismograms of all the measurements that exhibit differ-
ent classifications assigned by the CNN and human experts are

subjected to manual evaluation. Our findings indicate that 10
out of 28 earthquakes, 18 out of 24 collapses, and 18 out
of 37 explosions were mislabeled by the previous human
operators. Here, we selected three events to exemplify the

Figure 2. The distribution of monitoring stations and seismic events in
the study region, with the dataset sourced from the Seismic Network of
Shandong Province (SSNC). The locations of monitoring stations are
denoted by triangles, and the natural earthquakes, mine collapses, and
explosions are indicated by circles, dots, and squares, respectively, as
initially labeled by human experts. The purple-dashed lines are major
geological block boundaries. The white dots are major cities. The color
version of this figure is available only in the electronic edition.
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characteristic waveforms associated with different seismic
sources, as illustrated in Figure 5. Collapse events typically
exhibit longer periods compared to earthquakes and explosions
with more clear surface waves. In the z-component, the initial
particle motion of vertical component generally shows down-
ward displacement. Therefore, event 202002050239 has been
reclassified as a collapse event, diverging from its initial categori-
zation as an earthquake based on its long periods waveform
(Fig. 5a,d,g). Explosion events, in contrast, manifest as a uniform
spectrum, with an upward first motion in the vertical compo-
nent. Furthermore, the amplitude of the P wave is generally
larger than the S wave in the case of explosions. Earthquakes,
on the other hand, display a more complex spectral pattern.
The initial particle motion of vertical component varies depend-
ing on the coordinate of the back azimuth. In addition, earth-
quakes typically show a slower rate of signal attenuation than
explosions or collapses. Consequently, events 201804182153
and 202003222154, originally labeled as a collapse and an explo-
sion, respectively, have been reinterpreted as earthquakes based
on these specific seismic characteristics based on their large S-
wave amplitude and complex spectral pattern (Fig. 5b,c,e,f,h,i).

Moreover, due to the presence of indistinct features on the
seismograms, 5 earthquakes, 1 collapse, and 12 explosions are
regarded as ambiguous events. Consequently, it is difficult to
determine whether these events were mislabeled by the CNN
or previous human operators. For examples, Figure 6a,d,g is
classified as an ambiguous earthquake due to the overlapping
features from all three types of events in their traces (large
P-wave amplitude, long-period waveform after S wave);
Figure 6b,c,e,f,h,i is classified as an ambiguous collapse and
explosion respectively due to low signal-to-noise ratio. Even if
we assume that the previous human operators’ labeling is correct
for all the ambiguous events, more than 50% of the conflicting
measurements are still misclassified by the human operators with
varying event labels. These results suggest that the CNN outper-
forms human operators when working with the original dataset.

Results with corrected dataset
Mislabeled and ambiguous measurements commonly exist in
various datasets and decrease the accuracy of ML models. To
minimize the impact of unreliable measurements, we perform
correction of all mislabeled measurements and removal of
ambiguous ones with unclear features. We then conduct the
same tenfold cross-validation process using the corrected
dataset. After the same process as that used for the first
scan is performed, the accuracies at the network level of the
CNN increase from 97.3% to 99.2% (1040/1048) for natural
earthquakes, from 84.9% to 95.9% (137/143) for collapses, and
from 93.7% to 98.1% (560/571) for explosions (Fig. 4b,d,f,
respectively). At the station level, CNN successfully classified
94.7% (11,409/12,053) earthquakes, 88.7% (1,228/1,385) col-
lapses, and 88.1% (3,549/4,030) explosions. The overall accu-
racy at the network level of each type is over 95% with the
corrected dataset. The CNN produces discrepant labels com-
pared to previous human operators in 25 events, 10 of which
are consistent with the initial training process utilizing the
original dataset, whereas 15 are novel in the second training
process that incorporated the corrected dataset. Furthermore,
the CNN labels all corrected events identically to the rectified
labels in the initial training process. Thus, the CNN agrees
with all the manually corrected events and provides labels that
align with those assigned by human experts for the 15 misla-
beled events in the initial training process. We also manually
assess the 15 unique events and find that 1 earthquake and
1 collapse are considered mislabeled by human, and the fea-
tures of the 2 explosions and 1 earthquake are unclear on
the seismograms.

Figure 3. The operational workflow of the convolutional neural network (CNN)
adopted in this study. The CNN receives three-component (N, E, and Z)
seismic waveforms as inputs, and produces outputs in the form of probability
estimates for natural earthquakes, mine collapses, and explosions,
represented as three distinct probabilities.
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DISCUSSION
Impact of data quality and human-in-the-loop
feedback
After the correction of mislabeled and ambiguous events, CNN
exhibits a noticeable improvement in accuracy. The true misla-
beled events, which are correctly labeled by human experts, but
misclassified by CNN, exhibit vague results, with the maximum
value being close to the other two values. Cross validation is a
powerful technique for evaluating the performance of ML mod-
els. When cross validation is combined with CNNs, the resulting
methodology becomes a potent tool for identifying mislabeled
data. By iteratively training and testing the model using different
subsets of the data, researchers can gain insights into the quality
of the labels assigned to each data point. Any instances of mis-
labeling can then be flagged and corrected, leading to improved
accuracy and reliability of the resulting ML model.

Moreover, even with the most advanced ML techniques, the
role of the human-in-the-loop feedback remains critical (Xin
et al., 2018; Monarch, 2021). This is particularly true when
dealing with complex datasets, where the insights and experi-
ence of a human expert can help guide the evaluation process
and ensure that the model is performing as expected. By com-
bining the power of cross validation with the human expertise

of researchers, it is possible to create ML models that are accu-
rate, reliable, and effective in real-world applications.

Impact of data distribution
Even after balancing, CNN still exhibits superior accuracy in
categorizing types with increasing event frequencies. This may
be due to the fact that a large dataset includes various situa-
tions, and CNN attains a higher probability of avoiding over-
fitting. Overfitting occurs when a model is trained too well on a
specific dataset, but cannot generalize to new, unseen data.
Hence, it is recommended to utilize a balanced dataset for
CNN training, whenever feasible, to ensure high classification
accuracy, particularly for infrequent events that could be inad-
equately represented in the dataset. A balanced dataset can
potentially enhance the model’s ability to identify all classes
equally well, which is crucial in applications such as event

Figure 4. Performance evaluation of the CNN in the study, with the number
of various types of events in each group denoted by left bars at each group
number, and the number of events with matching labels assigned by both
the CNN and human evaluators are shown by right bars at each group
number. (a,c,e) The outcomes generated using the original dataset. (b,d,f)
The results obtained with the corrected dataset.
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detection where each class is of equal importance. In addition,
balanced datasets may assist in reducing the influence of any
bias or noise that may be present in the training data.

To further investigate the performance of CNN, the distri-
bution of the true mislabeled events in the results of CNN is
evaluated. To accomplish this, we plot the accuracy of the CNN

Figure 6. Three types of seismic events are demonstrated by the following
examples: (a,d,g) three-component traces recorded at station PENL during
event 201811091057, which is categorized as an ambiguous earthquake.

(b,e,h) Traces at station RSH during event 201811201143, which is cat-
egorized as an ambiguous collapse. (c,f,i) Traces at station CHD during
event 201810241237, which is categorized as an ambiguous explosion.

Figure 5. Three types of seismic events are demonstrated by the following
examples: (a,d,g) three-component traces of event 202002050239 at

station ZCH. (b,e,h) Event 201804182153 at station DSD. (c,f,i) Event
202003222154 at station XIT.
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versus the magnitude and the number of measurements of all
events, as shown in Figure 7. The plot demonstrates that the
accuracy of the CNN increases with the magnitude and the
number of measurements. When the magnitude is larger than
2.5 and the number of measurements is larger than 20, the
CNN can successfully classify all the events. This is consistent
with the commonsense idea that a larger magnitude would
generate clearer features on the seismograms, and a larger
number of measurements would reduce the influence of bias.

Data-centric artificial intelligence
In addition to the challenges of interpretability and calibration,
CNNs can also be impacted by the quality and quantity of data
available for training. The accuracy and reliability of the CNN
model are highly dependent on the quality of the dataset used
for training. Insufficient or poorly curated data can lead to
underfitting or overfitting of the model, resulting in a less reli-
able and accurate classification. Ng et al. (2021) proposed a
data-centric artificial intelligence strategy that emphasizes
the importance of improving datasets instead of solely focusing
on calibrating models. This approach involves developing bet-
ter data collection strategies, incorporating human-in-the-loop
feedback, and ensuring the quality and diversity of the data
used for training. By improving the quality of the dataset
and incorporating human-in-the-loop feedback, the resulting
CNN models can be more accurate, reliable, and interpretable.

CONCLUSION
In this study, we establish an 11-layer CNN to classify natural
earthquakes, mine collapses, and explosions in the Shandong
Province, China. We perform cross validation to comprehen-
sively scan the entire dataset, and the findings indicate that

CNN outperforms human
analysts. Furthermore, we man-
ually evaluate all the measure-
ments in the dataset with
different labels assigned by both
the CNN and human evalua-
tors, retaining, correcting, or
discarding them as appropriate.
By training CNN on the cor-
rected dataset, we observe a
noticeable enhancement in
accuracy, with all accuracy val-
ues of the three event types sur-
passing 95%. In addition, we
find that the performance of
CNN is strongly dependent
on the number and magnitude
of measurements from each
event received by the monitor-
ing stations.

These outcomes indicate
that the quality and distribution of the dataset used to train
and validate CNN play a critical role in its performance.
Therefore, special attention must be paid to the dataset when
using CNNs for seismic waveform classification.

DATA AND RESCOURCES
The code and trained models utilized in this study can
be accessed on Github (https://github.com/YW-Zhang94/CNN_
Classification_Earthquake_Collapse_Explosion.git, last accessed
March 2023), whereas the dataset has been made available on
Figshare (doi: 10.6084/m9.figshare.22207498). Waveform data
has been made available with limitations due to confidentiality
policies, consisting of 10 s before and 40 s after the P-wave arrival
without location information. Furthermore, the authors would
like to acknowledge the significant contribution of ChatGPT
in refining and enhancing the text of our article.
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