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Highlights
• It is the first finite difference method for high-dimensional fractional Laplacian.
• It has accuracy of O(h2) for u ∈ C2+⌊α⌋, α−⌊α⌋+ε(Rd ) with small constant ε > 0.
• Error estimates provide sharper consistency conditions, improving existing results.
• Its multilevel Toeplitz structure requires low computation and storage costs.
• It recovers the central difference scheme for classical Laplacian −∆ as α → 2−1.

Abstract

In this paper, we propose accurate and efficient finite difference methods to discretize the two- and three-dimensional
fractional Laplacian (−∆)

α
2 (0 < α < 2) in hypersingular integral form. The proposed methods provide a fractional analogue

of the central difference schemes to the fractional Laplacian. As α → 2−, they collapse to the central difference schemes of the
classical Laplace operator −∆. We prove that our methods are consistent if u ∈ C⌊α⌋, α−⌊α⌋+ε(Rd ), and the local truncation
error is O(hε), with ε > 0 a small constant and ⌊·⌋ denoting the floor function. If u ∈ C2+⌊α⌋, α−⌊α⌋+ε(Rd ), they can achieve
the second order of accuracy for any α ∈ (0, 2). These results hold for any dimension d ≥ 1 and thus improve the existing
error estimates of the one-dimensional cases in the literature. Extensive numerical experiments are provided and confirm our
analytical results. We then apply our method to solve the fractional Poisson problems and the fractional Allen–Cahn equations.
Numerical simulations suggest that to achieve the second order of accuracy, the solution of the fractional Poisson problem
should at most satisfy u ∈ C1,1(Rd ). One merit of our methods is that they yield a multilevel Toeplitz stiffness matrix, an
appealing property for the development of fast algorithms via the fast Fourier transform (FFT). Our studies of the two- and
three-dimensional fractional Allen–Cahn equations demonstrate the efficiency of our methods in solving the high-dimensional
fractional problems.
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1. Introduction

In classical partial differential equation (PDE) models, diffusion is described by the classical Laplace operator
∆ = (∂xx+∂yy+∂zz), characterizing the transport mechanics due to Brownian motion. Recently, it has been suggested
that many complex (e.g., biological and chemical) systems are instead characterized by Lévy motion, rather than
Brownian motion; see [1–4] and references therein. Hence, the classical PDE models fail to properly describe the
phenomena in these systems. To circumvent such issues, the fractional models were proposed, where diffusion is
described by the fractional Laplacian (−∆)

α
2 [1,3]. In contrast to the classical diffusion models, the fractional models

possess significant advantages for describing problems with long-range interactions, enabling one to describe the
power law invasion profiles that have been observed in many applications [5–7]. However, the nonlocality of the
fractional Laplacian introduces considerable challenges in both mathematical analysis and numerical simulations.

In this study, we focus on the finite difference discretization of the integral fractional Laplacian (−∆)
α
2 (for

0 < α < 2). Probabilistically, the fractional Laplacian represents the infinitesimal generator of a symmetric α-stable
Lévy process. It is defined in terms of the hypersingular integral [8,9]:

(−∆)
α
2 u(x) = cd,α P.V.

∫
Rd

u(x) − u(x′)
|x − x′|

d+α
dx′, for α ∈ (0, 2), (1.1)

where P.V. stands for the Cauchy principal value, and |x − x′
| denotes the Euclidean distance between points x and

x′. The normalization constant cd,α is defined as

cd,α =
2α−1α Γ

(
(d + α)/2

)
√
πd Γ

(
1 − α/2

) , for d = 1, 2, 3

with Γ (·) denoting the Gamma function. In the literature, the fractional Laplacian is also defined via a pseudo-
differential operator with symbol |k|

α [8,9], i.e.,

(−∆)
α
2 u(x) = F−1[

|k|
αF[u]

]
, for α > 0, (1.2)

where F represents the Fourier transform, and F−1 denotes its inverse. Over the entire space Rd , the frac-
tional Laplacian (1.1) is equivalent to the pseudo-differential operator (1.2) [9–12]. As pointed out in [13], the
d-dimensional (for any d ≥ 1) fractional Laplacian is rotational invariant, which is a crucial property in modeling
isotropic anomalous diffusion in many applications [14]. The rotational invariance distinguishes the fractional
Laplacian from many other fractional derivatives when d ≥ 2 [13].

Due to its nonlocality and strong singularity, numerical methods for the integral fractional Laplacian (1.1) still
remain scant. In [15–19], various finite element methods (FEM) are proposed to solve problems with the integral
fractional Laplacian (1.1), and numerical results are presented for one-, two-, and three-dimensional cases. In [20],
a spectral Galerkin method is presented for the one-dimensional fractional reaction–diffusion equations. In contrast
to the progress of FEM, the development of finite difference methods to the integral fractional Laplacian still falls
behind. So far, although several finite difference methods exist in the literature [21–23], they are all limited to one-
dimensional (i.e., d = 1) cases. To the best of our knowledge, finite difference methods for the high-dimensional
(i.e., d > 1) fractional Laplacian (1.1) are still missing in the literature.

In this paper, we propose accurate and efficient finite difference methods to discretize the two- and three-
dimensional integral fractional Laplacian (1.1). Our methods fill the gap in the literature on the finite difference
methods for the fractional Laplacian (−∆)

α
2 . More importantly, they yield a symmetric multilevel Toeplitz stiffness

matrix and thus enable one to develop fast algorithms via the fast Fourier transform (FFT) for their efficient
implementation. The proposed finite difference methods provide a fractional analogue of the central difference
schemes to the fractional Laplacian, and as α → 2−, they collapse to the five-point (for d = 2) or seven-
point (for d = 3) finite difference schemes to the classical Laplace operator −∆. We carry out both numerical
analysis and simulations to understand the performance of our methods. It shows that our methods are consistent
if u ∈ C⌊α⌋, α−⌊α⌋+ε(Rd ), and the local truncation error is O(hε), with ε > 0 a small constant and ⌊·⌋ denoting the
floor function. If u ∈ C2+⌊α⌋, α−⌊α⌋+ε(Rd ), our methods can achieve the second order of accuracy for any α ∈ (0, 2).
Extensive numerical experiments confirm our analytical results. Note that our results improve the error estimates
in [21] and provide much sharper consistent conditions for the finite difference methods of the fractional Laplacian.
We then apply our methods to solve the fractional Poisson problems and the fractional Allen–Cahn equations. Our
numerical studies suggest that our finite difference methods have a second order of accuracy in solving the fractional
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Poisson equation, if the solution u ∈ C1,1(Rd ). To demonstrate their effectiveness in solving high-dimensional
problems, we implement our methods via FFT-based fast algorithms to solve both two- and three-dimensional
fractional Allen–Cahn equations. It shows that at each time step the computational complexity is O(M log M), and
memory storage requirement is O(M), with M the total number of spatial unknowns.

The paper is organized as follows. In Section 2, we propose a finite difference method for the two-dimensional
fractional Laplacian (1.1), and the detailed error estimates are provided in Section 3. In Section 4, we generalize
our method and analysis in Sections 2–3 to the three dimensions. Numerical examples are presented in Section 5
to test the performance of our methods and study the fractional problems, including the fractional Poisson equation
and the fractional Allen–Cahn equation. Finally, we draw conclusions in Section 6.

2. Finite difference method in two dimensions

So far, numerical methods for the integral fractional Laplacian (1.1) still remain very limited, especially in
high dimensions (i.e., d > 1), and the main challenges come from its strong singularity. Recently, several finite
difference methods have been proposed to discretize the one-dimensional (1D) fractional Laplacian; see [21–23]
and references therein. Among them, the method in [21] is the current state-of-the-art finite difference method for
the 1D fractional Laplacian — it can achieve the second order of accuracy uniformly for any α ∈ (0, 2). However,
the finite difference method for the high-dimensional fractional Laplacian (1.1) is still missing in the literature.
In this section, we present a finite difference method for the two-dimensional (2D) fractional Laplacian, and its
generalization to the three-dimensional (3D) cases can be found in Section 4.

We consider the fractional Laplacian (1.1) on the bounded domain Ω = (ax , bx ) × (ay, by) with the extended
homogeneous Dirichlet boundary conditions on Ω c

= R2
\Ω . Introducing two new variables ξ = |x − x ′

| and
η = |y − y′

| and denoting the vector ξ = (ξ, η), we can reformulate the 2D fractional Laplacian (1.1) as:

(−∆)
α
2 u(x) = −c2,α

∫
∞

0

∫
∞

0

1

|ξ |
2+α

( ∑
m,n=0,1

u
(
x + (−1)mξ, y + (−1)nη

)
− 4u(x)

)
dξdη. (2.1)

Here, we introduce a splitting parameter γ ∈ (α, 2], and define the function

ψγ (x, ξ ) =
1

|ξ |
γ

( ∑
m,n=0,1

u
(
x + (−1)mξ, y + (−1)nη

)
− 4u(x)

)
. (2.2)

Then, the fractional Laplacian in (2.1) can be further written as the weighted integral of the central difference
quotient ψγ , i.e.,

(−∆)
α
2 u(x) = −c2,α

∫
∞

0

∫
∞

0
ψγ (x, ξ )ωγ (ξ ) dξdη, with ωγ (ξ ) = |ξ |

γ−(2+α), (2.3)

where ωγ can be viewed as the weight function. The key novelty of our approach is to reformulate the fractional
Laplacian (1.1) as a weighted integral of the central difference quotient in (2.3), that is, splitting the strong-singular
kernel function |ξ |

−(2+α) into two weak-singular parts, i.e., |ξ |
−γ and |ξ |

γ−(2+α). This idea of splitting the kernel
function was introduced in [21,24] for the 1D fractional Laplacian, and it has been applied to solve the fractional
Schrödinger equation in an infinite potential well [24]. Note that the splitting parameter γ plays a crucial role in
determining the accuracy of our method, which will be further discussed in Sections 3 and 5.

Let L = max{bx − ax , by − ay}. Denote D1 = (0, L)2 and D2 = R2
+
\D1 = {(ξ, η) | ξ ≥ L or η ≥ L}. We then

divide the integral in (2.3) into two parts:

(−∆)
α
2 u(x) = −c2,α

(∫
D1

ψγ (x, ξ )ωγ (ξ ) dξdη +

∫
D2

ψγ (x, ξ )ωγ (ξ ) dξdη
)
. (2.4)

Due to the extended homogeneous Dirichlet boundary conditions over Ω c, we have that for x ∈ Ω , and ξ ≥ L or
η ≥ L , the point (x + (−1)mξ, y + (−1)nη) ∈ Ω c, for m, n = 0, 1. Thus, we obtain for any x ∈ Ω and ξ ∈ D2, the
function u(x + (−1)mξ, y + (−1)nη) ≡ 0 and immediately ψγ (x, ξ ) = −4u(x)|ξ |

−γ . Then, the integral over D2 is
simplified as:∫

D2

ψγ (x, ξ )ωγ (ξ ) dξdη = −4u(x)
∫

D2

|ξ |
−(2+α) dξdη. (2.5)
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It is easy to see that the only possible error of (2.5) is from evaluating the integral of |ξ |
−(2+α), which can be easily

controlled.
We now move to approximate the first integral of (2.4). As discussed previously, the main difficulty is from the

strong singular kernel, and the traditional quadrature rules fail to provide a satisfactory approximation. To achieve
high accuracy, we propose a weighted trapezoidal method, i.e., retaining part of the singularity in the integral.
Choose an integer N > 0, and define the mesh size h = L/N . Denote grid points ξi = ih and η j = jh, for
0 ≤ i, j ≤ N . For notational simplicity, we denote ξ i j = (ξi , η j ) and then |ξ i j | =

√
ξ 2

i + η2
j . Additionally, we

define the element

Ii j := [ih, (i + 1)h] × [ jh, ( j + 1)h], for 0 ≤ i, j ≤ N − 1.

It is easy to see that D1 = ∪
N−1
i, j=0 Ii j . Hence, the integral over D1 can be formulated as:

∫
D1

ψγ (x, ξ )ωγ (ξ ) dξdη =

N−1∑
i, j=0

∫
Ii j

ψγ (x, ξ )ωγ (ξ ) dξdη. (2.6)

Next, we focus on the approximation to the integral over each element Ii j .
For i ̸= 0 or j ̸= 0, the weighted trapezoidal rule is applied, and we obtain the approximation:∫

Ii j

ψγ (x, ξ )ωγ (ξ ) dξdη ≈
1
4

( ∑
m,n=0,1

ψγ
(
x, ξ (i+m)( j+n)

)) ∫
Ii j

ωγ (ξ ) dξdη. (2.7)

While i = j = 0, the approximation of the integral over I00 is not as straightforward as that in (2.7). Using the
weighted trapezoidal rule, we get∫

I00

ψγ (x, ξ )ωγ (ξ ) dξdη ≈
1
4

(
lim
ξ→0

ψγ
(
x, ξ

)
+

∑
m,n=0,1
m+n ̸=0

ψγ
(
x, ξmn

)) ∫
I00

ωγ (ξ ) dξdη. (2.8)

Assuming the limit in (2.8) exists, then it depends on the splitting parameter γ . We will divide our discussion into
two cases: γ ∈ (α, 2) and γ = 2. If γ = 2, the limit can be approximated by:

lim
ξ→0

ψ2(x, ξ ) ≈ ψ2(x, ξ 10) + ψ2(x, ξ 01) − ψ2(x, ξ 11). (2.9)

If γ ∈ (α, 2), we have

lim
ξ→0

ψγ (x, ξ ) = lim
ξ→0

(
ψ2(x, ξ )|ξ |

2−γ
)

= 0. (2.10)

Substituting (2.9)–(2.10) into (2.8), we obtain the approximation of the integral over I00 as:∫
I00

ψγ (x, ξ )ωγ (ξ ) dξdη ≈
1
4

( ∑
m,n=0,1
m+n ̸=0

cγmn ψγ
(
x, ξmn

)) ∫
I00

ωγ (ξ ) dξdη, (2.11)

where the coefficient cγmn = 1 for γ ∈ (α, 2), while cγ10 = cγ01 = 2 and cγ11 = 0 for γ = 2. Let Ti j denote the
collection of all elements in D1 that have ξ i j as a vertex, i.e.,

Ti j =
(
I(i−1)( j−1) ∪ I(i−1) j ∪ Ii( j−1) ∪ Ii j

)
∩ D1, for 0 ≤ i, j ≤ N − 1.



S. Duo and Y. Zhang / Computer Methods in Applied Mechanics and Engineering 355 (2019) 639–662 643

Then, combining (2.4)–(2.7) and (2.11) and reorganizing the terms, we obtain the approximation to the 2D fractional
Laplacian (1.1) as follows:

(−∆)
α
2
h,γ u(x) = −

c2,α

4

( ⌊γ
2

⌋ (
ψγ

(
x, ξ 10

)
+ ψγ

(
x, ξ 01

)
− ψγ

(
x, ξ 11

)) ∫
I00

ωγ (ξ ) dξdη

+

N−1∑
i, j=0

i+ j ̸=0

ψγ
(
x, ξ i j

) ∫
Ti j

ωγ (ξ ) dξdη − 16u(x)
∫

D2

|ξ |
−(2+α)dξdη

)
, x ∈ Ω . (2.12)

Without loss of generality, we assume that Nx = N , and choose Ny as the smaller integer such that ay+Nyh ≥ by .
Define the grid points xi = ax + ih for 0 ≤ i ≤ Nx , and y j = ay + jh for 0 ≤ j ≤ Ny . Let ui j be the numerical
approximation of u(xi , y j ). Noticing the definition of ψγ in (2.2), we obtain the finite difference discretization to
the 2D fractional Laplacian (−∆)

α
2 as:

(−∆)
α
2
h,γ ui j = −c2,α

[
a00ui j +

i−1∑
m=0

( j−1∑
n=0

m+n ̸=0

amnu(i−m)( j−n) +

Ny−1− j∑
n=1

amnu(i−m)( j+n)

)

+

Nx −1−i∑
m=0

( j−1∑
n=0

m+n ̸=0

amnu(i+m)( j−n) +

Ny−1− j∑
n=1

amnu(i+m)( j+n)

)]
, (2.13)

for 1 ≤ i ≤ Nx − 1 and 1 ≤ j ≤ Ny − 1. The scheme (2.13) shows that the discretized fractional Laplacian at
point (xi , y j ) depends on all points in the domain Ω , consistent with the nonlocal characteristic of the fractional
Laplacian. The coefficient amn depends on the choice of the splitting parameter γ . For m, n ≥ 0 but m + n > 0,
there is

amn =
2σ (m,n)

4|ξmn|
γ

(∫
Tmn

|ξ |
γ−(2+α) dξdη + c̄mn

⌊γ
2

⌋ ∫
I00

|ξ |
γ−(2+α) dξdη

)
, (2.14)

where σ (m, n) denotes the number of zeros of m and n, and the constant c̄01 = c̄10 = −c̄11 = 1, and c̄mn ≡ 0 for
other m, n. For m = n = 0, the coefficient

a00 = −2
N∑

m=1

(
am0 + a0m

)
− 4

N∑
m,n=1

amn − 4
∫

D2

|ξ |
−(2+α) dξdη. (2.15)

Remark 2.1. In the limit of α → 2−, our finite difference scheme in (2.13) with γ = 2 reduces to the five-point
finite difference scheme of the Laplace operator −∆ = −(∂xx + ∂yy), consistent with the limit behavior of the
fractional Laplacian (−∆)

α
2 . In fact, if γ = 2 we obtain

lim
α→2−

(
c2,αa10

)
= lim

α→2−

(
c2,αa01

)
=

1
h2 ; lim

α→2−

(
c2,αamn

)
= 0, for m + n > 1,

due to the following properties:

lim
α→2−

(
c2,α

∫
I00

|ξ |
−αdξ

)
= 1, lim

α→2−
c2,α = 0.

Immediately, the relation in (2.15) implies

lim
α→2−

(
c2,αa00

)
= −

4
h2 .

We can write the scheme (2.13) into matrix–vector form. For 1 ≤ j ≤ Ny − 1, denote the vector ux, j =

(u1, j , u2, j , . . . , uNx −1, j ), and let the block vector u = (ux,1,ux,2, . . . , ux, Ny−1)T . Then the matrix–vector form of
the scheme (2.13) is given by

(−∆)
α
2
h,γu = A2u, (2.16)
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where the matrix A2 is a symmetric block Toeplitz matrix, defined as

A2 =

⎛⎜⎜⎜⎜⎜⎝
Ax,0 Ax,1 . . . Ax,Ny−3 Ax,Ny−2

Ax,1 Ax,0 Ax,1 · · · Ax,Ny−3
...

. . .
. . .

. . .
...

Ax,Ny−3 . . . Ax,1 Ax,0 Ax,1

Ax,Ny−2 Ax,Ny−3 . . . Ax,1 Ax,0

⎞⎟⎟⎟⎟⎟⎠
M×M

(2.17)

with M = (Nx − 1)(Ny − 1) being the total number of unknowns, and each block Ax, j (for 0 ≤ j ≤ Ny − 2) is a
symmetric Toeplitz matrix, defined as

Ax, j = −c2,α

⎛⎜⎜⎜⎜⎜⎝
a0 j a1 j . . . a(Nx −3) j a(Nx −2) j

a1 j a0 j a1 j · · · a(Nx −3) j
...

. . .
. . .

. . .
...

a(Nx −3) j . . . a1 j a0 j a1 j

a(Nx −2) j a(Nx −3) j . . . a1 j a0 j

⎞⎟⎟⎟⎟⎟⎠
(Nx −1)×(Nx −1)

.

It is easy to verify that the matrix A2 is positive definite. In contrast to the differentiation matrix of the classical
Laplacian, the matrix A2 in (2.17) is a large dense matrix, which usually causes considerable challenges not
only for storing the matrix but also for computing matrix–vector products. However, thanks to the block-Toeplitz-
Toeplitz-block structure of A2, one can develop a FFT-based fast algorithm to efficiently compute matrix–vector
multiplication in (2.16), which greatly saves not only the computational costs but also storage requirements [25].

3. Error analysis

In this section, we provide the error estimates for our finite difference method in discretizing the 2D fractional
Laplacian. The main technique used in our proof is an extension of the weighted Montgomery identity (see
Lemma 3.1). The Montgomery identity is the framework of developing many classical inequalities, such as the
Ostrowski, Chebyshev, and Grüss type inequalities. As an extension, the weighted Montgomery identity, first
introduced in [26,27], plays an important role in the study of weighted integrals. Here, we will begin with introducing
an extension function of the generalized Peano kernel.

Definition 3.1. Let w : [a, b] × [c, d] → R be an integrable function. For m, n ∈ N0, define

Θ (m,n)
[a, b]×[c, d](x, y) =

∑
(s,t)∈S

∫ y

t

∫ x

s
w(ξ, η)

(x − ξ )m(y − η)n

m! n!
dξdη, (x, y) ∈ [a, b] × [c, d],

where the set S =
{
(a, c), (a, d), (b, c), (b, d)

}
.

The function Θ has the following properties:

Property 3.1. Let m, n ∈ N0, and (x, y) ∈ [a, b] × [c, d].
(i) If w(x, y) = w(y, x), then

Θ (m,n)
[a, b]×[c, d](x, y) = Θ (n,m)

[c, d]×[a, b](y, x).

(ii) There exists a positive constant C, such that⏐⏐Θ (m,n)
[a, b]×[c, d](x, y)

⏐⏐ ≤ C(b − a)m(d − c)n
∫ d

c

∫ b

a
|w(ξ, η)| dξdη

(iii) For 0 ≤ k ≤ m and 0 ≤ l ≤ n, we have

∂k,lΘ
(m,n)
[a,b]×[c,d](x, y) = Θ (m−k, n−l)

[a,b]×[c,d] (x, y).

Here, we denote ∂m,n f (x, y) = ∂m
x ∂

n
y f (x, y) as a partial derivative of f .

The properties (i) and (ii) are implied from its definition, and the property (iii) can be obtained by using the
Leibniz integral rule. Here, we will omit their proofs for brevity. Next, we introduce the following lemma from the
weighted Montgomery identity of two variables.
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Lemma 3.1 (Extension of the Weighted Montgomery Identity). Let w, f : [a, b] × [c, d] → R be integrable
functions, and m, n ∈ N0. Define

Q =

∫ d

c

∫ b

a

(
4 f (x, y) −

(
f (a, c) + f (a, d) + f (b, c) + f (b, d)

))
w(x, y) dxdy.

Assume that the derivative ∂m,n f exists and is integrable for the following m and n. Then,
(i) If m, n = 0, 1 and m + n ≤ 1, we have

Q = −
1
2

∫ d

c

∫ b

a

(
∂0,1Θ

(0,0)
[a, b]×[c, d](x, y) ∂1,0 f (x, y) + ∂1,0Θ

(0,0)
[a, b]×[c, d](x, y) ∂0,1 f (x, y)

)
dxdy

−
1
2

∫ b

a

(
Θ (0,0)

[a, b]×[c, d](x, d) ∂1,0 f (x, d) − Θ (0,0)
[a, b]×[c, d](x, c) ∂1,0 f (x, c)

)
dx

−
1
2

∫ d

c

(
Θ (0,0)

[a, b]×[c, d](b, y) ∂0,1 f (b, y) − Θ (0,0)
[a, b]×[c, d](a, y) ∂0,1 f (a, y)

)
dy.

(ii) If m, n = 0, 1, 2 and m + n ≤ 2, we have

Q =

∫ d

c

∫ b

a
Θ (0,0)

[a, b]×[c, d](x, y) ∂1,1 f (x, y)dxdy

+

∫ b

a

(
Θ (1,0)

[a, b]×[c, d](x, d)∂2,0 f (x, d) − Θ (1,0)
[a, b]×[c, d](x, c)∂2,0 f (x, c)

)
dx

+

∫ d

c

(
Θ (0,1)

[a, b]×[c, d](b, y)∂0,2 f (b, y) − Θ (0,1)
[a, b]×[c, d](a, y)∂0,2 f (a, y)

)
dy

−

∑
m,n=0,1
m+n ̸=0,2

(
Θ (m,n)

[a, b]×[c, d](b, d) ∂m,n f (b, d) − Θ (m,n)
[a, b]×[c, d](b, c) ∂m,n f (b, c)

−Θ (m,n)
[a, b]×[c, d](a, d)∂m,n f (a, d) + Θ (m,n)

[a, b]×[c, d](a, c)∂m,n f (a, c)
)
.

(iii) If m, n = 0, 1, 2 and m + n ≤ 3, we have

Q = −
1
2

∫ d

c

∫ b

a

(
Θ (0,1)

[a, b]×[c, d](x, y) ∂1,2 f (x, y) + Θ (1,0)
[a, b]×[c, d](x, y) ∂2,1 f (x, y)

)
dxdy

+

∑
n=0,1

(
−

1
2

)n (∫ b

a

(
Θ (1,n)

[a, b]×[c, d](x, d)∂2,n f (x, d) − Θ (1,n)
[a, b]×[c, d](x, c)∂2,n f (x, c)

)
dx

+

∫ d

c

(
Θ (n,1)

[a, b]×[c, d](b, y)∂n,2 f (b, y) − Θ (n,1)
[a, b]×[c, d](a, y)∂n,2 f (a, y)

)
dy

)
+

∑
m,n=0,1
m+n ̸=0

(−1)m+n
(
Θ (m,n)

[a, b]×[c, d](b, d) ∂m,n f (b, d) − Θ (m,n)
[a, b]×[c, d](b, c) ∂m,n f (b, c)

−Θ (m,n)
[a, b]×[c, d](a, d)∂m,n f (a, d) + Θ (m,n)

[a, b]×[c, d](a, c)∂m,n f (a, c)
)
.

Proof. The proof of Lemma 3.1 can be done by first averaging the weighted Montgomery identity [27, Theorem
2.2] at points (a, c), (a, d), (b, c) and (b, d), and then using integration by parts. □

For the sake of completeness, we will review the Chebyshev integral inequality for two-variable functions as
follows, which will be frequently used in the proof of our theorems. The Chebyshev integral inequality for multiple
variable functions can be found in [28, Theorem A].

Lemma 3.2 (Chebyshev Integral Inequality). Let f, g : [a, b]×[c, d] → R be continuous, nonnegative, and similarly
ordered, i.e.,

(
f (x1, y1) − f (x2, y2)

)(
g(x1, y1) − g(x2, y2)

)
≥ 0, for any points (x1, y1) and (x2, y2). Then, it follows

that (∫ d

c

∫ b

a
f (x, y) dxdy

)(∫ d

c

∫ b

a
g(x, y) dxdy

)
≤ (b − a)(d − c)

∫ d

c

∫ b

a
f (x, y)g(x, y) dxdy.
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To prepare our main theorems, we will first discuss the properties of function ψγ (x, ξ ). For notational simplicity,
we will omit x, and let ψγ (ξ ) := ψγ (x, ξ ) in the rest of this section.

Definition 3.2. For k ∈ N0 and s ∈ (0, 1], let Ck,s(Rd ) denote the space that consists of all functions u : Rd
→ R

with continuous partial derivatives of order less than or equal to k, whose kth partial derivatives are uniformly
Hölder continuous with exponent s.

Lemma 3.3. Let 0 < s ≤ 1, ξ ∈ R2
+
\{0}, and m, n ∈ N0.

(i) If u ∈ C0,s(R2), there exists a constant C > 0, such that
⏐⏐ψ0(ξ )

⏐⏐ ≤ C |ξ |
s .

(ii) If u ∈ C1,s(R2), there exists a constant C > 0, such that for any γ ∈ (α, 2],⏐⏐∂m,nψγ (ξ )
⏐⏐ ≤ C |ξ |

s+1−γ−(m+n), for m + n ≤ 1.

(iii) Let u ∈ C2+⌊α⌋, s(R2) for α ∈ (0, 2). Then we have⏐⏐∂m,nψ2(ξ, η) + ∂n,mψ2(η, ξ )
⏐⏐ ≤ C |ξ |

s+⌊α⌋−(m+n), for 0 < m + n ≤ 2 + ⌊α⌋, (3.1)

with the constant C > 0.

The proof of the above properties can be done by directly applying Taylor’s theorem.

Theorem 3.1 (Minimum Consistent Conditions). Suppose that u has finite support on the domain Ω ⊂ R2. Let
(−∆)

α
2
h,γ be the finite difference approximation of the fractional Laplacian (−∆)

α
2 , with h a small mesh size. If

u ∈ C⌊α⌋, α−⌊α⌋+ε(R2) with 0 < ε ≤ 1 + ⌊α⌋ − α, then for any splitting parameter γ ∈ (α, 2], the local truncation
error satisfies(−∆)

α
2 u − (−∆)

α
2
h,γ u


∞

≤ Chε, for α ∈ (0, 2) (3.2)

with C a positive constant independent of h.

Proof. Introduce the error function at point x ∈ Ω as:

eh
α,γ (x) = (−∆)

α
2 u(x) − (−∆)

α
2
h,γ u(x)

= −
c2,α

4

[∫
I00

(
4ψγ (ξ ) −

∑
(m,n)∈~̃1

cγmnψγ
(
ξmn

))
wγ (ξ )dξdη

+

∑
(i, j)∈~̃N−1

∫
Ii j

(
4ψγ (ξ ) −

∑
(m,n)∈~1

ψγ
(
ξ (i+m)( j+n)

))
wγ (ξ )dξdη

]
= −

c2,α

4
(I + I I ), x ∈ Ω , (3.3)

which is obtained from (2.4)–(2.7) and (2.11). For simplicity, we denote the index set

~N =
{
(i, j) | i, j = 0, 1, . . . , N

}
, ~̃N = ~N \(0, 0).

We will then prove the cases of α ∈ (0, 1) and α ∈ [1, 2) separately.

Case (i) (For u ∈ C0,α+ε(R2) with α ∈ (0, 1)): Here, we rewrite ψγ (ξ ) = |ξ |
−γψ0(ξ ). Using the triangle inequality

and Lemma 3.3(i) with s = α + ε to the term I , we obtain

| I | =

⏐⏐⏐⏐ ∫ h

0

∫ h

0

(
4ψ0(ξ )|ξ |

−(2+α)
−

∑
(m,n)∈~̃1

cγmn ψ0(ξmn)
)

|ξmn|
−γ

|ξ |
γ−(2+α) dξdη

⏐⏐⏐⏐
≤ C

(∫ h

0

∫ h

0

⏐⏐ψ0(ξ )
⏐⏐|ξ |

−(2+α) dξdη +

∑
(m,n)∈~̃1

∫ h

0

∫ h

0

⏐⏐ψ0(ξmn)
⏐⏐ |ξmn|

−γ
|ξ |

γ−(2+α)dξdη
)

≤ C
(∫ h

0

∫ h

0
|ξ |

−(2−ε)dξdη + hα+ε−γ

∫ h

0

∫ h

0
|ξ |

γ−(2+α)dξdη
)

≤ Chε, (3.4)
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where the last inequality is obtained by using the following property: for p < 2, we have∫ h

0

∫ h

0
|ξ |

−pdξdη = 2
∫ π

4

0

∫ h sec θ

0
r−p+1 drdθ =

2
2 − p

h2−p
∫ π

4

0
(sec θ )2−pdθ ≤ Ch2−p (3.5)

with C a positive constant independent of h.
For term I I , we first rewrite it by adding and subtracting terms and then use the triangle inequality, Taylor’s

theorem, and Lemma 3.3(i) with s = α + ε, to obtain

| I I | =

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

∫
Ii j

|ξ |
−γ

(
4ψ0(ξ ) −

∑
(m,n)∈~1

ψ0
(
ξ (i+m)( j+n)

))
|ξ |

γ−(2+α)dξ

+

∑
(i, j)∈~̃N−1

∫
Ii j

( ∑
(m,n)∈~1

(
|ξ |

−γ
− |ξ (i+m)( j+n)|

−γ
)
ψ0

(
ξ (i+m)( j+n)

))
|ξ |

γ−(2+α) dξ

⏐⏐⏐⏐
≤

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

∫
Ii j

|ξ |
−γ

(
4ψ0(ξ ) −

∑
(m,n)∈~1

ψ0
(
ξ (i+m)( j+n)

))
|ξ |

γ−(2+α)dξ

⏐⏐⏐⏐
+

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

∫
Ii j

( ∑
(m,n)∈~1

(
|ξ |

−γ
− |ξ (i+m)( j+n)|

−γ
)
ψ0

(
ξ (i+m)( j+n)

))
|ξ |

γ−(2+α)dξ

⏐⏐⏐⏐
≤ C

( ∑
(i, j)∈~̃N−1

∫
Ii j

|ξ |
−γ hα+ε

|ξ |
γ−(2+α) dξ +

∑
(i, j)∈~̃N−1

∫
Ii j

h|ξ |
−γ−1

|ξ |
α+ε

|ξ |
γ−(2+α) dξ

)
≤ Chε, (3.6)

where the last inequality is obtained from the following property: for p > 0, we have∑
(i, j)∈~̃N−1

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
−p dξdη =

∫ L

h

∫ L

h
|ξ |

−p dξdη + 2
∫ L

h

∫ h

0
|ξ |

−p dξdη

≤

(∫ L

h
ξ−

p
2 dξ

)2

+ 2
∫ L

h

∫ h

0
|ξ |

−p dξdη ≤ Chmin{0,2−p}. (3.7)

Combining (3.4) with (3.6) leads to (3.2) immediately.

Case (ii) (For u ∈ C1,α−1+ε(R2) with α ∈ [1, 2)): Using the extension of the weighted Montgomery identity in
Lemma 3.1(i) to the error function (3.3) with w(ξ ) = |ξ |

γ−(2+α), we get

eh
α,γ (x) = −

c2,α

4

[ ∫
I00

(
4ψγ (ξ ) −

∑
(m,n)∈~̃1

cγmn ψγ (ξmn)
)
|ξ |

γ−(2+α)dξdη

−
1
2

∑
(i, j)∈~̃N−1

∫
Ii j

(
∂0,1Θ

(0,0)
Ii j

(ξ, η) ∂1,0ψγ (ξ, η) + ∂1,0Θ
(0,0)
Ii j

(ξ, η) ∂0,1ψγ (ξ, η)
)

dξdη

−
1
2

∑
(i, j)∈~̃N−1

∫ ξi+1

ξi

(
Θ (0,0)

Ii j
(ξ, η j+1) ∂1,0ψγ (ξ, η j+1) − Θ (0,0)

Ii j
(ξ, η j ) ∂1,0ψγ (ξ, η j )

)
dξ

−
1
2

∑
(i, j)∈~̃N−1

∫ η j+1

η j

(
Θ (0,0)

Ii j
(ξi+1, η) ∂0,1ψγ (ξi+1, η) − Θ (0,0)

Ii j
(ξi , η) ∂0,1ψγ (ξi , η)

)
dη

]
= −

c2,α

4

(
I + I I + I I I + I V

)
. (3.8)

For term I , we use the triangle inequality and then Lemma 3.3(ii) with m = n = 0 to obtain

| I | =

⏐⏐⏐⏐ ∫ h

0

∫ h

0

(
4ψγ (ξ )|ξ |

γ−(2+α)
−

∑
(m,n)∈~̃1

cγmn ψγ (ξmn)
)

|ξ |
γ−(2+α) dξdη

⏐⏐⏐⏐
≤ C

(∫ h

0

∫ h

0

⏐⏐ψγ (ξ )
⏐⏐|ξ |

γ−(2+α) dξdη +

∑
(m,n)∈~̃1

∫ h

0

∫ h

0

⏐⏐ψγ (ξmn)
⏐⏐|ξ |

γ−(2+α)dξdη
)

≤ C
(∫ h

0

∫ h

0
|ξ |

−(2−ε)dξdη + hα+ε−γ

∫ h

0

∫ h

0
|ξ |

γ−(2+α)dξdη
)

≤ Chε, (3.9)

where the last inequality is obtained by using the property (3.5).
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For term I I , by the triangle inequality, Property 3.1, Lemma 3.3(ii) with s = α − 1 + ε, and the Chebyshev
integral inequality, we obtain

| I I | =
1
2

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

∫
Ii j

(
∂0,1Θ

(0,0)
Ii j

(ξ, η) ∂1,0ψγ (ξ, η) + ∂1,0Θ
(0,0)
Ii j

(ξ, η) ∂0,1ψγ (ξ, η)
)

dξdη
⏐⏐⏐⏐

≤
1
2

∑
(i, j)∈~̃N−1

∫
Ii j

(⏐⏐∂0,1Θ
(0,0)
Ii j

(ξ, η)
⏐⏐⏐⏐∂1,0ψγ (ξ, η)

⏐⏐ +
⏐⏐∂1,0Θ

(0,0)
Ii j

(ξ, η)
⏐⏐⏐⏐∂0,1ψγ (ξ, η)

⏐⏐)dξdη

≤
C
h

∑
(i, j)∈~̃N−1

(∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
γ−(2+α) dξdη

)(∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
α+ε−(1+γ ) dξdη

)

≤ Ch
∑

(i, j)∈~̃N−1

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
−(3−ε) dξdη ≤ Chε (3.10)

where the last inequality is obtained by the property (3.7) with p = 3 − ε.
Following similar lines as in obtaining (3.10), i.e., using the triangle inequality, Property 3.1(ii), Lemma 3.3(ii),

and the Chebyshev integral inequality, we obtain the estimate of term I I I as:

| I I I | =
1
2

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

∫ ξi+1

ξi

(
Θ (0,0)

Ii j
(ξ, η j+1) ∂1,0ψγ (ξ, η j+1) − Θ (0,0)

Ii j
(ξ, η j ) ∂1,0ψγ (ξ, η j )

)
dξ

⏐⏐⏐⏐
≤ C

∑
(i, j)∈~̃N−1

∫ ξi+1

ξi

(∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
γ−(2+α)dξdη

)(⏐⏐∂1,0ψγ (ξ, η j )
⏐⏐ +

⏐⏐∂1,0ψγ (ξ, η j+1)
⏐⏐)dξ

≤ C
∑

(i, j)∈~̃N−1

(∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
γ−(2+α) dξdη

)(
h−1

∫ η j +1

η j

∫ ξi+1

ξi

|ξ |
α+ε−(1+γ )dξdη

)

≤ Ch
∑

(i, j)∈~̃N−1

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
−(3−ε) dξdη ≤ Chε, (3.11)

by the property (3.7). Following the same lines, we can obtain the estimate of term I V as:

| I V | ≤ Chε. (3.12)

Combining (3.8) with (3.9), (3.10)–(3.12) yields the error estimate in (3.2). □

Theorem 3.1 shows that our finite difference method is consistent if the function u ∈ C⌊α⌋, α−⌊α⌋+ε(R2), for
0 < ε ≤ 1 + ⌊α⌋ − α. Furthermore, it implies that the consistent condition that is required when α < 1 is much
weaker than that for α ≥ 1.

Theorem 3.2 (Second Order of Accuracy). Suppose that u has finite support on the domain Ω ⊂ R2. Let (−∆)
α
2
h,γ

be the finite difference approximation of the fractional Laplacian (−∆)
α
2 , with h a small mesh size. If the splitting

parameter γ = 2 and u ∈ C2+⌊α⌋, α−⌊α⌋+ε(R2) with 0 < ε ≤ 1 + ⌊α⌋ − α, then the local truncation error satisfies(−∆)
α
2 u − (−∆)

α
2
h,γ u


∞

≤ Ch2, for α ∈ (0, 2) (3.13)

with C a positive constant independent of h.

Proof. In the following, we will use γ = 2 and prove the cases of α < 1 and α ≥ 1 separately.

Case (i) (For u ∈ C2,α+ε(R2) with α ∈ (0, 1)): Taking γ = 2 and using Lemma 3.1(ii) with ω(ξ ) = |ξ |
−α to the

error function (3.3), we get:

eh
α,2(x) = −

c2,α

4

[ ∫
I00

(
4ψ2(ξ ) − 2

(
ψ2(ξ1, 0) + ψ2(0, η1)

))
|ξ |

−α dξdη

+

∑
(i, j)∈~̃N−1

∫
Ii j

Θ (0,0)
Ii j

(ξ, η)∂1,1ψ2(ξ, η) dξdη
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+

∑
(i, j)∈~̃N−1

( ∫ ξi+1

ξi

(
Θ (1,0)

Ii j
(ξ, η j+1)∂2,0ψ2(ξ, η j+1) − Θ (1,0)

Ii j
(ξ, η j )∂2,0ψ2(ξ, η j )

)
dξ

+

∫ η j+1

η j

(
Θ (0,1)

Ii j
(ξi+1, η)∂0,2ψ2(ξi+1, η) − Θ (0,1)

Ii j
(ξi , η)∂0,2ψ2(ξi , η)

)
dη

)
−

∑
(i, j)∈~̃N−1

∑
m+n=1

(
Θ (m,n)

Ii j
(ξ (i+1)( j+1))∂m,nψ2(ξ (i+1)( j+1)) + Θ (m,n)

Ii j
(ξ i j )∂m,nψ2(ξ i j )

−Θ (m,n)
Ii j

(ξ i( j+1))∂m,nψ2(ξ i( j+1)) − Θ (m,n)
Ii j

(ξ (i+1) j )∂m,nψ2(ξ (i+1) j )
)]

= −
c2,α

4

(
I + I I + I I I + I V

)
. (3.14)

Denote Ψ2(ξ, η) := ψ2(ξ, η) + ψ2(η, ξ ), and rewrite the term I as

| I | = 2
⏐⏐⏐⏐ ∫ h

0

∫ h

0

(
ψ2(ξ, η) + ψ2(η, ξ ) −

(
ψ2(h, 0) + ψ2(0, h)

))
|ξ |

−αdξdη
⏐⏐⏐⏐

= 2
⏐⏐⏐⏐ ∫ h

0

∫ h

0

(
Ψ2(ξ, η) − Ψ2(ξ, 0) + Ψ2(ξ, 0) − Ψ2(h, 0)

)
|ξ |

−αdξdη
⏐⏐⏐⏐

= 2
⏐⏐⏐⏐ ∫ h

0

∫ h

0

(∫ η

0
∂0,1Ψ2(ξ, η̃) dη̃ +

∫ h

ξ

∂1,0Ψ2 (̃ξ, 0) d ξ̃
)

|ξ |
−αdξdη

⏐⏐⏐⏐
by Taylor’s theorem. Then noticing the definition of Ψ2, using Lemma 3.3(iii) and Chebyshev integral inequality
for one variable, we obtain

| I | ≤ C
∫ h

0

∫ h

0

(∫ h

0

(
ξ 2

+ η̃2) α+ε−1
2 dη̃ +

∫ h

0
ξ̃α+ε−1 d ξ̃

)
|ξ |

−αdξdη

≤ Ch
∫ h

0

∫ h

0
|ξ |

ε−1dξdη + Chα+ε

∫ h

0

∫ h

0
|ξ |

−α dξdη ≤ Ch2+ε, (3.15)

where the last inequality is obtained by the property (3.5).
For term I I , we first rewrite it by using Property 3.1(i) as

| I I | =
1
2

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

∫
I j i

Θ (0,0)
Ii j

(η, ξ )∂1,1ψ2(η, ξ ) dξdη +

∑
(i, j)∈~̃N−1

∫
Ii j

Θ (0,0)
Ii j

(ξ, η)∂1,1ψ2(ξ, η) dξdη
⏐⏐⏐⏐

≤
1
2

∑
(i, j)∈~̃N−1

∫
Ii j

⏐⏐Θ (0,0)
Ii j

(ξ, η)
⏐⏐⏐⏐∂1,1ψ2(η, ξ ) + ∂1,1ψ2(ξ, η)

⏐⏐ dξdη.

Then, using the triangle inequality, Property 3.1(ii), Lemma 3.3(iii), and the Chebyshev integral inequality, we
obtain

| I I | ≤ C
∑

(i, j)∈~̃N−1

(∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
−αdξdη

)(∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
α−2+ε dξdη

)

≤ Ch2
∑

(i, j)∈~̃N−1

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
−(2−ε)dξdη ≤ Ch2, (3.16)

where the last inequality is obtained by (3.7) with p = 2 − ε.
For term I I I , noticing that ξi = ηi and applying Property 3.1(i) and following the same lines as in obtaining

(3.16), we get

| I I I | =

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

(∫ ξi+1

ξi

(
Θ (1,0)

Ii j
(ξ, η j+1)∂2,0ψ2(ξ, η j+1) − Θ (1,0)

Ii j
(ξ, η j )∂2,0ψ2(ξ, η j )

)
dξ

+

∫ η j+1

η j

(
Θ (0,1)

Ii j
(ξi+1, η)∂0,2ψ2(ξi+1, η) − Θ (0,1)

Ii j
(ξi , η)∂0,2ψ2(ξi , η)

)
dη

)⏐⏐⏐⏐
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=

⏐⏐⏐⏐ ∑
(i, j)∈~̃N−1

(∫ ξi+1

ξi

Θ (1,0)
Ii j

(ξ, η j+1)
(
∂2,0ψ2(ξ, η j+1) + ∂0,2ψ2(η j+1, ξ )

)
dξ

−

∫ ξi+1

ξi

Θ (1,0)
Ii j

(ξ, η j )
(
∂2,0ψ2(ξ, η j ) + ∂0,2ψ2(η j , ξ )

)
dξ

)⏐⏐⏐⏐
≤ C

∑
(i, j)∈~̃N−1

(
h

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
−αdξdη

)(
h−1

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
α+ε−2 dξdη

)

≤ C
∑

(i, j)∈~̃N−1

(
h2

∫ η j+1

η j

∫ ξi+1

ξi

|ξ |
ε−2dξdη

)
≤ Ch2, (3.17)

by the property (3.7). Rewrite term I V as

I V =

∑
(i, j)∈~̃N−1

∑
m+n=1

(
Θ (m,n)

Ii j
(ξ i( j+1))∂m,nψ2(ξ i( j+1)) + Θ (m,n)

Ii j
(ξ (i+1) j )∂m,nψ2(ξ (i+1) j )

−Θ (m,n)
Ii j

(ξ (i+1)( j+1))∂m,nψ2(ξ (i+1)( j+1)) − Θ (m,n)
Ii j

(ξ i j )∂m,nψ2(ξ i j )
)

= I V1 + I V2 + I V3 + I V4 + I V5 + I V6 + I V7 + I V8,

where the terms

I V1 =

∑
m+n=1

N−1∑
i, j=1

i+ j ̸=2

(
Θ (m,n)

Ii( j−1)
(ξ i j ) − Θ (m,n)

Ii j
(ξ i j )

)(
∂m,nψ2(ξi , η j ) + ∂n,mψ2(η j , ξi )

)
,

I V2 =

∑
m+n=1

N−1∑
i, j=1

i+ j ̸=2

(
Θ (m,n)

I(i−1) j
(ξ i j ) − Θ (m,n)

I(i−1)( j−1)
(ξ i j )

)(
∂m,nψ2(ξi , η j ) + ∂n,mψ2(η j , ξi )

)
,

I V3 =

∑
m+n=1

N−1∑
i=2

(
Θ (m,n)

I(i−1)0
(ξ i0) − Θ (m,n)

Ii0
(ξ i0)

)(
∂m,nψ2(ξN , ηi ) + ∂n,mψ2(ηi , ξN )

)
,

I V4 =

∑
m+n=1

N−1∑
i=1

(
Θ (m,n)

I(N−1)i
(ξ Ni ) − Θ (m,n)

I(N−1)(i−1)
(ξ Ni )

)(
∂m,nψ2(ξi , η0) + ∂n,mψ2(η0, ξi )

)
,

I V5 =

∑
m+n=1

Θ (m,n)
I(N−1)0

(ξ N0)
(
∂m,nψ2(ξN , η0) + ∂n,mψ2(η0, ξN )

)
,

I V6 =

∑
m+n=1

−Θ (m,n)
I10

(ξ 10)
(
∂m,nψ2(ξ1, η0) + ∂n,mψ2(η0, ξ1)

)
,

I V7 = Θ (1,0)
I11

(ξ 11)
(
∂1,0ψ2(ξ1, η1) + ∂0,1ψ2(η1, ξ1)

)
,

I V8 = Θ (1,0)
I(N−1)(N−1)

(ξ N N )
(
∂1,0ψ2(ηN , ξN ) + ∂0,1ψ2(ξN , ηN )

)
.

Here, the terms I V1, I V2, I V3, and I V4 can be estimated in the same manner. To show it, we will introduce the
following property of Θ . Define an auxiliary function

G(1,n)(x) =

∫ η j+1

η j

∫ ξi

x
|ξ |

−α(ξi − ξ )(η j − η)n dξdη, for n = 0, 1.

We then can write⏐⏐⏐Θ (1,n)
I(i−1) j

(ξi , η j ) − Θ (1,n)
Ii j

(ξi , η j )
⏐⏐⏐ =

⏐⏐G(1,n)(ξi+1) − G(1,n)(ξi−1)
⏐⏐/n!

≤ Ch4+n
(√
ξ 2

i + η2
j

)−(1+α)
, for n = 0, 1. (3.18)
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Using the triangle inequality, Lemma 3.3(iii) and (3.18), we obtain

| I V1 | ≤

∑
m+n=1

N−1∑
i, j=1

i+ j ̸=2

⏐⏐⏐Θ (m,n)
I(i−1) j

(ξi , η j ) − Θ (m,n)
Ii j

(ξi , η j )
⏐⏐⏐⏐⏐∂m,nψ2(ξi , η j ) + ∂n,mψ2(η j , ξi )

⏐⏐
≤ Ch4

N−1∑
i, j=1

i+ j ̸=2

(√
ξ 2

i + η2
j

)−(2−ε)
≤ Ch2

∫ L

h

∫ L

h
|ξ |

−(2−ε) dξdη ≤ Ch2. (3.19)

Following similar lines, we can get

| I V2 |, | I V3 |, | I V4 | ≤ Ch2.

Using Property 3.1(ii) and Lemma 3.3(iii), we obtain

| I V5 |, | I V6 |, | I V7 |, | I V8 | ≤ Ch2+ε.

To avoid redundancy, we will omit their proofs. Hence, we get

| I V | ≤ Ch2. (3.20)

Combining (3.15)–(3.17) and (3.20) yields (3.13).

Case (ii) (For u ∈ C3,α−1+ε(R2) with α ∈ [1, 2)): By the extension of the weighted Montgomery identity in
Lemma 3.1(iii) with ω(ξ ) = |ξ |

−α , we obtain

eh
α,2(x) = −

c2,α

4

[ ∫
I00

(
4ψ2(ξ, η) − 2

(
ψ2(ξ1, 0) + ψ2(0, η1)

))
|ξ |

−α dξdη

−
1
2

∑
(i, j)∈~̃N−1

∫
Ii j

(
Θ (1,0)

Ii j
(ξ, η)∂2,1ψ2(ξ, η) + Θ (0,1)

Ii j
(ξ, η)∂1,2ψ2(ξ, η)

)
dξ dη

+

∑
(i, j)∈~̃N−1

∑
n=0,1

(
−

1
2

)n (∫ ξi+1

ξi

(
Θ (1,n)

Ii j
(ξ, η j+1)∂2,nψ2(ξ, η j+1) − Θ (1,n)

Ii j
(ξ, η j )∂2,nψ2(ξ, η j )

)
dξ

+

∫ η j+1

η j

(
Θ (n,1)

Ii j
(ξi+1, η)∂n,2ψ2(ξi+1, η) − Θ (n,1)

Ii j
(ξi , η)∂n,2ψ2(ξi , η)

)
dη

)
−

∑
(i, j)∈~̃N−1

∑
(m,n)∈~̃1

(−1)m+n
(
Θ (m,n)

Ii j
(ξ (i+1) j )∂m,nψ2(ξ (i+1) j ) − Θ (m,n)

Ii j
(ξ i j )∂m,nψ2(ξ i j )

+Θ (m,n)
Ii j

(ξ i( j+1))∂m,nψ2(ξ i( j+1)) − Θ (m,n)
Ii j

(ξ (i+1)( j+1))∂m,nψ2(ξ (i+1)( j+1))
)]

= −
c2,α

4

(
I + I I + I I I + I V

)
. (3.21)

Here, the estimates of term I –I V can be done by following similar lines as those in the proof of Case (i). For the
purpose of brevity, we will omit their proofs. □

Theorem 3.2 shows that our finite difference method can achieve the second order of accuracy for any α ∈ (0, 2).
For α < 1, less smoothness condition of u is required to achieve this accuracy. As α → 2−, the behavior of our finite
difference method that is stated in Theorem 3.2 is consistent with the central difference method for the classical
Laplace operator.

4. Generalization to three dimensions

In this section, we will generalize our numerical methods in Section 2 and present a finite difference method
for the 3D integral fractional Laplacian (1.1). We consider the fractional Laplacian (−∆)

α
2 on the bounded domain

Ω = (ax , bx ) × (ay, by) × (az, bz) with extended homogeneous boundary conditions.
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Following the same lines as in Section 2, we first rewrite the 3D fractional Laplacian (1.1) as a weighted integral,
i.e.,

(−∆)
α
2 u(x) = −c3,α

∫
∞

0

∫
∞

0

∫
∞

0
ψγ (x, ξ )ωγ (ξ ) dξdηdζ, with ωγ (ξ ) = |ξ |

γ−(3+α), (4.1)

where the vector ξ= (ξ, η, ζ ) with ξ = |x − x ′
|, η = |y − y′

| and ζ = |z − z′
|, and the function

ψγ (x, ξ ) =
1

|ξ |
γ

( ∑
m,n,s=0,1

u
(
x + (−1)mξ, y + (−1)nη, z + (−1)sζ

)
− 8u(x)

)
. (4.2)

Choose a constant L = max
{
bx − ax , by − ay, bz − az

}
. Define grid points ξi = ih, η j = jh, ζk = kh, for

0 ≤ i, j, k ≤ N , with the mesh size h = L/N . For notational convenience, we let ξ i jk = (ξi , η j , ζk), and

|ξ i jk | =

√
ξ 2

i + η2
j + ζ 2

k . Denote D1 = (0, L)3
= ∪

N−1
i, j,k=0 Ii jk with the element

Ii jk =
[
ih, (i + 1)h

]
×

[
jh, ( j + 1)h

]
×

[
kh, (k + 1)h

]
, 0 ≤ i, j, k ≤ N − 1,

and D2 =
(
R3

+

)
\D1. The fractional Laplacian in (4.1) can be formulated as:

(−∆)
α
2 u(x) = −c3,α

(∫
D1

ψγ (x, ξ )ωγ (ξ ) dξdηdζ +

∫
D2

ψγ (x, ξ )ωγ (ξ ) dξdηdζ
)

= −c3,α

( N−1∑
i, j,k=0

∫
Ii jk

ψγ (x, ξ )ωγ (ξ ) dξdηdζ − 8u(x)
∫

D2

|ξ |
−(3+α)dξdηdζ

)
, (4.3)

since the extended homogeneous Dirichlet boundary condition implies that ψγ (x, ξ ) = −8u(x)|ξ |
−γ for any x ∈ Ω

and ξ ∈ D2.
We now focus on the approximation to the integral over each element Ii jk . If i + j +k ̸= 0, we use the weighted

trapezoidal rules and obtain the approximation:∫
Ii jk

ψγ (x, ξ )ωγ (ξ ) dξdηdζ ≈
1
8

( ∑
m,n,s=0,1

ψγ
(
x, ξ (i+m)( j+n)(k+s)

)) ∫
Ii jk

ωγ (ξ ) dξdηdζ. (4.4)

If i = j = k = 0, using the weighted trapezoidal rules leads to∫
I000

ψγ (x, ξ )ωγ (ξ ) dξdηdζ ≈
1
8

(
lim
ξ→0

ψγ (x, ξ ) +

∑
m,n,s=0,1
m+n+s ̸=0

ψγ
(
x, ξmns

)) ∫
I000

ωγ (ξ ) dξdηdζ. (4.5)

Assuming the above limit exists, we then divide our discussion into two parts based on the value of the splitting
parameter γ . For γ = 2, we can approximate the limit as:

lim
ξ→0

ψ2(x, ξ ) ≈
5
3

∑
m,n,s=0,1
m+n+s=1

ψ2
(
x, ξmns

)
−

∑
m,n,s=0,1
m+n+s>1

ψ2
(
x, ξmns

)
. (4.6)

While γ ∈ (α, 2), we obtain

lim
ξ→0

ψγ (x, ξ ) = lim
ξ→0

(
ψ2(x, ξ ) |ξ |

2−γ
)

= 0. (4.7)

Substituting the limits (4.6)–(4.7) into (4.5) gives the approximation of the integral over I000 as:∫
I000

ψγ (x, ξ )ωγ (ξ ) dξdηdζ ≈
1
8

( ∑
m,n,s=0,1
m+n+s ̸=0

cγmnsψγ
(
x, ξmns

)) ∫
I000

ωγ (ξ ) dξdηdζ, (4.8)

where the coefficient

cγmns =

⎧⎨⎩1, if γ ∈ (α, 2),
8/3, if γ = 2, and m + n + s = 1,
0, if γ = 2, and m + n + s > 1.
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Combining (4.3) with (4.4) and (4.8), we obtain

(−∆)
α
2
h,γ u(x) = −

c3,α

8

[ N−1∑
i, j,k=0

i+ j+k ̸=0

( ∑
m,n,s=0,1

ψγ
(
x, ξ (i+m)( j+n)(k+s)

)) ∫
Ii jk

ωγ (ξ ) dξdηdζ

+

( ∑
m,n,s=0,1
m+n+s ̸=0

cγmnsψγ
(
x, ξmns

)) ∫
I000

ωγ (ξ )dξdηdζ − 64 u(x)
∫

D2

|ξ |
−(3+α)dξdηdζ

)
. (4.9)

Without loss of generality, we assume that Nx = N , and choose Ny, Nz as the smaller integers such that
ay + Nyh ≥ by and az + Nzh ≥ bz . Define the grid points xi = ax + ih for 0 ≤ i ≤ Nx , y j = ay + jh for
0 ≤ j ≤ Ny , and zk = az + kh for 0 ≤ k ≤ Nz . Let ui jk represent the numerical solution of u(xi , y j , zk).
Combining (4.9) with (4.2) and simplifying the calculations, we then obtain the finite difference schemes for the
3D fractional Laplacian (−∆)

α
2 as:

(−∆)
α
2
h,γ ui jk = −c3,α

[
a000 ui jk +

∑
p=0,1

( ∑
m∈S p

i

am00 u[i+(−1)pm] jk +

∑
n∈S p

j

a0n0ui[ j+(−1)pn]k

+

∑
s∈S p

k

a00sui j[k+(−1)ps]

)
+

∑
p,q=0,1

(∑
s∈Sq

k

∑
n∈S p

j

a0nsui[ j+(−1)pn][k+(−1)q s]

+

∑
s∈Sq

k

∑
m∈S p

i

am0su[i+(−1)pm] j[k+(−1)q s] +

∑
n∈Sq

j

∑
m∈S p

i

amn0u[i+(−1)pm][ j+(−1)q n] k

)

+

∑
p,q,r=0,1

∑
s∈Sr

k

∑
n∈Sq

j

∑
m∈S p

i

amnsu[i+(−1)pm][ j+(−1)q n][k+(−1)r s]

]
, (4.10)

for 1 ≤ i ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, and 1 ≤ k ≤ Nz − 1, where the index sets

S p
i =

{
l | l ∈ N, 1 ≤ i + (−1)pl ≤ Nx − 1

}
,

S p
j =

{
l | l ∈ N, 1 ≤ j + (−1)pl ≤ Ny − 1

}
,

S p
k =

{
l | l ∈ N, 1 ≤ k + (−1)pl ≤ Nz − 1

}
, p = 0, or 1.

For m + n + s > 0, the coefficient

amns =
2σ (m,n,s)

8|ξmns |
γ

(∫
Tmns

|ξ |
γ−(3+α) dξ − c̄mns

⌊γ
2

⌋ ∫
I000

|ξ |
γ−(3+α) dξ

)
,

where σ (m, n, s) denotes the number of zeros of m, n and s. For m, n, s ≤ 1, if σ (m, n, s) = 2, then c̄mns = −
5
3 ; if

σ (m, n, s) = 1, then c̄mns = 1; otherwise, c̄mns = 0 if σ (m, n, s) = 0. Here, we denote Tmns (for 0 ≤ m, n, s ≤ N−1)
as the collection of all elements in D1 that have the point ξmns as a vertex, i.e.,

Tmns =
(
[(m − 1)h, (m + 1)h] × [(n − 1)h, (n + 1)h] × [(s − 1)h, (s + 1)h]

)
∩ D1.

The coefficient a000 is computed by:

a000 = −2
N∑

m=1

(
am00 + a0m0 + a00m

)
− 4

N∑
m,n=1

(
a0mn + am0n + amn0

)
−8

N∑
m,n,s=1

amns − 8
∫

D2

|ξ |
−(3+α) dξdηdζ.

Remark 4.1. As in the 2D case, the optimal choice of the splitting parameter is γ = 2. Moreover, as α → 2−, the
finite difference scheme in (4.10) with γ = 2 collapses to the central difference scheme of the classical 3D Laplace
operator −∆ = −(∂xx + ∂yy + ∂zz).
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Following similar arguments in proving Theorems 3.1 and 3.2, we can obtain the following estimates on the
local truncation errors of the finite difference scheme to the d-dimensional (d ≥ 1) fractional Laplacian (−∆)

α
2 .

Note that our estimates in the following theorems hold for any dimension d ≥ 1 and greatly improve the 1D error
estimates in [21]. We will omit their proofs for brevity.

Theorem 4.1 (Minimum Consistent Conditions). Suppose that u has finite support on the domain Ω ⊂ Rd (for
d ≥ 1). Let (−∆)

α
2
h,γ be the finite difference approximation of the fractional Laplacian (−∆)

α
2 , with h a small mesh

size. If u ∈ C⌊α⌋, α−⌊α⌋+ε(Rd ) with 0 < ε ≤ 1 + ⌊α⌋ − α, then for any splitting parameter γ ∈ (α, 2], the local
truncation error satisfies(−∆)

α
2 u − (−∆)

α
2
h,γ u


∞

≤ Chε, for α ∈ (0, 2) (4.11)

with C a positive constant independent of h.

Theorem 4.2 (Second Order of Accuracy). Suppose that u has finite support on the domain Ω ⊂ Rd (for d ≥ 1).
Let (−∆)

α
2
h,γ be the finite difference approximation of the fractional Laplacian (−∆)

α
2 , with h a small mesh size.

If the splitting parameter γ = 2 and u ∈ C2+⌊α⌋, α−⌊α⌋+ε(Rd ) with 0 < ε ≤ 1 + ⌊α⌋ − α, then the local truncation
error satisfies(−∆)

α
2 u − (−∆)

α
2
h,γ u


∞

≤ Ch2, for α ∈ (0, 2) (4.12)

with C a positive constant independent of h.

Denote the vector u =
(
ux,y,1,ux,y,2 . . . , ux,y,Nz−1

)T . Here, the block vector ux,y,k =
(
ux,1,k,ux,2,k . . . ,

ux,Ny−1,k
)
, with each block ux, j,k =

(
u1 jk, u2 jk, . . . , u(Nx −1) jk

)
. Then, the matrix–vector form of (4.10) is given by

(−∆)
α
2 u = A3u. (4.13)

Here, A3 is the matrix representation of the 3D fractional Laplacian, defined as:

A3 =

⎛⎜⎜⎜⎜⎜⎝
Ax,y,0 Ax,y,1 . . . Ax,y,Nz−3 Ax,y,Nz−2
Ax,y,1 Ax,y,0 Ax,y,1 · · · Ax,y,Nz−3
...

. . .
. . .

. . .
...

Ax,y,Nz−3 . . . Ax,y,1 Ax,y,0 Ax,y,1
Ax,y,Nz−2 Ax,y,Nz−3 . . . Ax,y,1 Ax,y,0

⎞⎟⎟⎟⎟⎟⎠ ,

where for k = 0, 1, . . . , Nz − 2, the block matrix

Ax,y,k =

⎛⎜⎜⎜⎜⎜⎝
Ax,0,k Ax,1,k . . . Ax,Ny−3,k Ax,Ny−2,k

Ax,1,k Ax,0,k Ax,1,k · · · Ax,Ny−3,k
...

. . .
. . .

. . .
...

Ax,Ny−3,k . . . Ax,1,k Ax,0,k Ax,1,k

Ax,Ny−2,k Ax,Ny−3,k . . . Ax,1,k Ax,0,k

⎞⎟⎟⎟⎟⎟⎠ ,

with

Ax, j,k =

⎛⎜⎜⎜⎜⎜⎝
a0 jk a1 jk . . . a(Nx −3) jk a(Nx −2) jk

a1 jk a0 jk a1 jk · · · a(Nx −3) jk
...

. . .
. . .

. . .
...

a(Nx −3) jk . . . a1 jk a0 jk a1 jk

a(Nx −2) jk a(Nx −3) jk . . . a1 jk a0 jk

⎞⎟⎟⎟⎟⎟⎠ ,

for j = 0, 1, . . . , Ny − 2, and k = 0, 1, . . . , Nz − 2. Similar to the 2D case, the matrix–vector product in (4.13) can
be efficiently computed via the 3D FFT, and the computational cost is of O(M log M), and the memory requirement
is O(M) with M = (Nx − 1)(Ny − 1)(Nz − 1).
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Table 1
Numerical errors ∥e∥p = ∥(−∆)

α
2 u − (−∆)

α
2
h,γ u∥p , where u is defined in (5.1) with d = 2 and

s = 1, i.e., u ∈ C0,1(R2).

α h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512

0.1
∥e∥∞

5.704E−4 3.122E−4 1.690E−4 9.095E−5 4.870E−5 2.579E−5
c.r. 0.8694 0.8853 0.8940 0.9012 0.9170

∥e∥2
3.687E−4 1.424E−4 5.450E−5 2.075E−5 7.861E−6 2.946E−6
c.r. 1.3728 1.3856 1.3932 1.4003 1.4159

0.4
∥e∥∞

4.250E−3 2.858E−3 1.901E−3 1.257E−3 8.278E−4 5.393E−4
c.r. 0.5723 0.5886 0.5963 0.6027 0.6183

∥e∥2
2.514E−3 1.190E−3 5.588E−4 2.614E−4 1.217E−4 5.609E−5
c.r. 1.0793 1.0901 1.0962 1.1023 1.1177

0.7
∥e∥∞

1.350E−2 1.115E−2 9.115E−3 7.418E−3 6.011E−3 4.818E−3
c.r. 0.2757 0.2907 0.2973 0.3033 0.3191

∥e∥2
7.590E−3 4.414E−3 2.550E−3 1.467E−3 8.410E−4 4.768E−4
c.r. 0.7820 0.7918 0.7972 0.8030 0.8187

5. Numerical experiments

In this section, we on one hand test the numerical accuracy of the proposed finite difference methods to verify
our analytical results in Theorems 3.1–3.2 and 4.1–4.2, and on the other hand apply the methods to study the
fractional Poisson problems as well as the fractional Allen–Cahn equation. Unless otherwise stated, we will choose
the splitting parameter γ = 2 in this section.

5.1. Numerical accuracy

To test the accuracy of our method, we consider the function

u(x) =

⎧⎪⎨⎪⎩
( d∏

i=1

(
1 − (x (i))2))s

, if x ∈ (−1, 1)d ,

0, otherwise.

(5.1)

for s ≥ 1, where x = (x (1), x (2), . . . , x (d)). Define the error ∥e∥p = ∥(−∆)
α
2 u − (−∆)

α
2
h,γ u∥p. Since the exact

solution of (−∆)
α
2 u is unknown, we will use the numerical solutions with very fine mesh size, i.e., h = 2−12 for

2D and h = 2−8 for 3D, as the “exact” solution to compute numerical errors.

Example 5.1.1. In this example, we take d = 2 and verify the analytical results in Theorem 3.1. For α ∈ (0, 1),
we choose s = 1 in (5.1), i.e., u ∈ C0,1(R2), or equivalently u ∈ C0, α+ε(R2) with ε = 1 − α. Table 1 presents
the numerical errors ∥e∥∞ and ∥e∥2 for various α. It shows that for each α, the accuracy in ∞-norm is O(h1−α),
confirming our theoretical results in Theorem 3.1. Moreover, we find that the accuracy in 2-norm is O(h

3
2 −α), and

the numerical errors increase with the value of α.

On the other hand, Table 2 shows the numerical errors for α ∈ [1, 2), where u is defined in (5.1) with s = 2,
i.e., u ∈ C1,1(R2), or equivalently u ∈ C1,α−1+ε(R2) with ε = 2 − α. We find that our method has an accuracy
of O(h2−α) in ∞-norm and O(h

5
2 −α) in 2-norm. Our extensive simulations show that the same conclusions can be

made for the 3D cases, and here we will omit showing them for the purpose of brevity.

Example 5.1.2. In this example, we verify the second order of accuracy of our methods. Fig. 1 presents the
numerical errors ∥e∥∞ versus different mesh size h, where the function u is defined in (5.1) with s = 2 + α + ε

and ε = 0.1, equivalently, u ∈ C2,α+ε(Rd ) for α < 1 and u ∈ C3,α−1+ε(Rd ) for α ≥ 1. It shows that when the
maximum regularity conditions are satisfied, our method has the second order of accuracy in both ∞-norm and
2-norm, independent of the parameter α. This observation confirms our analytical results in Theorems 3.2 and 4.2.
Moreover, we find that the smaller the parameter α, the smaller the numerical errors.
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Table 2
Numerical errors ∥e∥p = ∥(−∆)

α
2 u − (−∆)

α
2
h,γ u∥p , where u is defined in (5.1) with d = 2 and

s = 2, i.e., u ∈ C1,1(R2).

α h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512

1
∥e∥∞

3.017E−3 1.434E−3 6.584E−4 3.063E−4 1.452E−4 6.923E−5
c.r. 1.0732 1.1232 1.1041 1.0770 1.0682

∥e∥2
2.094E−3 6.972E−4 2.293E−4 7.549E−5 2.506E−5 8.350E−6
c.r. 1.5869 1.6044 1.6029 1.5908 1.5856

1.4
∥e∥∞

8.871E−3 5.665E−3 3.505E−3 2.202E−3 1.405E−3 8.973E−4
c.r. 0.6470 0.6927 0.6708 0.6481 0.6467

∥e∥2
5.568E−3 2.270E−3 9.677E−4 4.243E−4 1.898E−4 8.532E−5
c.r. 1.2945 1.2301 1.1896 1.1605 1.1535

1.9
∥e∥∞

1.224E−2 7.609E−3 7.504E−3 6.956E−3 6.395E−3 5.828E−3
c.r. 0.6854 0.0199 0.1094 0.1213 0.1340

∥e∥2
1.289E−2 3.973E−3 1.947E−3 1.204E−3 7.766E−4 5.000E−4
c.r. 1.6975 1.0288 0.6939 0.6323 0.6352

Fig. 1. Numerical errors ∥e∥∞ for u in (5.1) with s = 2 + α + ε and ε = 0.1, i.e., u ∈ C2,α+ε(Rd ) for α ∈ (0, 1) and u ∈ C3,α−1+ε(Rd )
for α ∈ [1, 2), where d = 2 (a & b) and d = 3 (c & d).

In addition, we compare the numerical errors of our methods for different choices of the splitting parameter γ

in Fig. 2. It shows that the splitting parameter γ plays a crucial role in determining the numerical accuracy. Among

all the choices of α < γ ≤ 2, only the case of γ = 2 leads to the optimal accuracy, i.e., O(h2), while the other

choices of γ ∈ (α, 2) yield an α-dependent rate, e.g., O(h1.3) for α = 0.7 and O(h0.5) for α = 1.5.
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Fig. 2. Numerical errors ∥e∥∞ for u in (5.1) with s = 2 + α + ε and ε = 0.1 for various γ .

5.2. Fractional Poisson equations

In this section, we test the performance of our finite difference methods in solving the fractional Poisson problem.
Without loss of generality, we will consider the 2D fractional Poisson equation:

(−∆)
α
2 u = f (x), x ∈ (−1, 1)2, (5.2)

u(x) = 0, x ∈ R2
\(−1, 1)2. (5.3)

Our extensive studies show that the same conclusions can be obtained in solving the 3D Poisson problems. Denote
the numerical errors ∥eu∥p = ∥u −uh∥p, where u and uh represent the exact and numerical solutions of (5.2)–(5.3),
respectively.

Example 5.2.1. We solve the problem (5.2)–(5.3) with the exact solution

u(x) = [(1 − x2)(1 − y2)]2, x ∈ (−1, 1)2. (5.4)

In practice, the function f in (5.2) is prepared numerically with a fine mesh size h = 2−12, i.e., computing
f = (−∆)

α
2
h,γ u with u defined in (5.4).

In Table 3, we present both the ∞-norm and 2-norm errors for various α. It shows that even though the solution
satisfies u ∈ C1,1(R2), our method can achieve the accuracy O(h2), independent of the parameter α. In other words,
to obtain the second order of accuracy, the regularity of solution u that is required in solving the fractional Poisson
problem is much lower than that required in discretizing the operator (−∆)

α
2 , which is consistent with the central

difference scheme for the classical Poisson problems. From the above results and our extensive studies, we conclude
that our method has the second order of accuracy in solving the fractional Poisson problem, if the solution satisfies
at most u ∈ C1,1(Rd ).

Example 5.2.2. We solve the problem (5.2)–(5.3) with the exact solution

u(x) = (1 − x2)(1 − y2), x ∈ (−1, 1)2, (5.5)

i.e., the solution u ∈ C0,1(R2). In this case, the solution has less regularity than that in the previous example. The
function f in (5.2) is similarly computed with the fine mesh size h = 2−12. Table 4 shows the numerical errors
∥eu∥∞ and ∥eu∥2 for various α.

It shows that the accuracy in ∞-norm is O(h), independent of the values of α, while the accuracy in 2-norm
is O(h p) for 1 ≤ p ≤

3
2 : the smaller the parameter α, the larger the accuracy rate p. For example, we have

∥eu∥2 ∼ O(h) for α = 1.9, while ∥eu∥2 ∼ O(h
3
2 ) for α = 0.1. Additionally, comparing the results in Table 4 with

those in Table 3, we find that the numerical errors increase when the solution u is less smooth.
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Table 3
Numerical errors in solving the fractional Poisson problem (5.2)–(5.3), where f is chosen such
that the exact solution is u(x) = (1 − x2)2(1 − y2)2.

α h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512

0.4
∥eu∥∞

1.658E−4 4.135E−5 1.031E−5 2.571E−6 6.399E−7 1.580E−7
c.r. 2.0031 2.0040 2.0039 2.0060 2.0182

∥eu∥2
1.288E−4 3.332E−5 8.547E−6 2.172E−6 5.470E−7 1.360E−7
c.r. 1.9504 1.9627 1.9767 1.9892 2.0080

1
∥eu∥∞

6.547E−4 1.584E−4 3.872E−5 9.520E−6 2.347E−6 5.754E−7
c.r. 2.0468 2.0331 2.0239 2.0202 2.0282

∥eu∥2
5.134E−4 1.248E−4 3.123E−5 7.885E−6 1.989E−6 4.966E−7
c.r. 2.0400 1.9989 1.9858 1.9870 2.0019

1.4
∥eu∥∞

1.184E−3 2.790E−4 6.650E−5 1.600E−5 3.872E−6 9.349E−7
c.r. 2.0856 2.0687 2.0553 2.0469 2.0502

∥eu∥2
1.014E−3 2.291E−4 5.349E−5 1.281E−5 3.120E−6 7.622E−7
c.r. 2.1460 2.0988 2.0616 2.0380 2.0334

Table 4
Numerical errors in solving the fractional Poisson problem (5.2)–(5.3), where f is chosen such
that the exact solution is u(x) = (1 − x2)(1 − y2).

α h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512

0.4
∥eu∥∞

1.551E−3 8.011E−4 4.071E−4 2.051E−4 1.026E−4 5.075E−5
c.r. 0.9533 0.9766 0.9893 0.9988 1.0160

∥eu∥2
1.198E−3 4.536E−4 1.674E−4 6.079E−5 2.181E−5 7.699E−6
c.r. 1.4005 1.4380 1.4616 1.4792 1.5019

1
∥eu∥∞

2.424E−3 1.265E−3 6.456E−4 3.259E−4 1.632E−4 8.070E−5
c.r. 0.9389 0.9701 0.9863 0.9975 1.0162

∥eu∥2
2.492E−3 1.053E−3 4.258E−4 1.673E−4 6.433E−5 2.416E−5
c.r. 1.2433 1.3056 1.3476 1.3791 1.4130

1.4
∥eu∥∞

1.982E−3 1.040E−3 5.326E−4 2.692E−4 1.349E−4 6.668E−5
c.r. 0.9301 0.9659 0.9844 0.9968 1.0165

∥eu∥2
2.583E−3 1.209E−3 5.397E−4 2.336E−4 9.886E−5 4.087E−5
c.r. 1.0954 1.1632 1.2081 1.2407 1.2744

Fig. 3. Numerical solution to the fractional Poisson problem (5.2)–(5.3) with f = 1.

Example 5.2.3. We solve the problem (5.2)–(5.3) with f = 1. It is well-known that the solution of the 1D fractional

Poisson equation with f = 1 can be found analytically, which satisfies u ∈ C0, α2 (R) [21,29]. By contrast, the exact

solution on the 2D rectangular domain still remains unknown. Fig. 3 illustrates the numerical solution u for different

α. It shows that the larger the power α, the smoother the function near the boundary, which is consistent with the

observations in 1D cases [21,29].
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Table 5
Numerical errors in solving the fractional Poisson problem (5.2)–(5.3) with f = 1.

α h = 1/16 h = 1/32 h = 1/64 h = 1/128 h = 1/256 h = 1/512

0.5
∥eu∥∞

3.435E−2 2.645E−2 2.157E−2 1.814E−2 1.525E−2 1.282E−2
c.r. 0.3772 0.2941 0.2502 0.2501 0.2500

∥eu∥2
2.754E−2 1.699E−2 1.034E−2 6.241E−3 3.748E−3 2.243E−3
c.r. 0.6970 0.7164 0.7283 0.7357 0.7404

1
∥eu∥∞

1.631E−2 1.155E−2 8.173E−3 5.783E−3 4.091E−3 2.893E−3
c.r. 0.4984 0.4985 0.4991 0.4995 0.4997

∥eu∥2
1.814E−2 1.015E−2 5.563E−3 3.007E−3 1.609E−3 8.537E−4
c.r. 0.8388 0.8669 0.8873 0.9025 0.9141

1.5
∥eu∥∞

4.727E−3 2.812E−3 1.675E−3 9.967E−4 5.930E−4 3.527E−4
c.r. 0.7493 0.7478 0.7485 0.7491 0.7495

∥eu∥2
7.105E−3 3.737E−3 1.940E−3 9.966E−4 5.080E−4 2.575E−4
c.r. 0.9269 0.9458 0.9610 0.9722 0.9803

Table 5 shows the numerical errors ∥eu∥∞ and ∥eu∥2 for various α, where we use the numerical solution computed
with fine mesh size h = 2−12 as our “exact” solution. It shows that even though the regularity of the solution in this
case is much lower than those in Examples 5.2.1–5.2.2, our method performs effectively in solving the fractional
Poisson problem. We find that the accuracy in ∞-norm is O(h

α
2 ) for any α ∈ (0, 2), and the maximum errors occur

around the boundary of the domain. While the accuracy in 2-norm is O(hmin{1, 1
2 +

α
2 }), that is, O(h) for α ≥ 1.

5.3. Fractional Allen–Cahn equation

The Allen–Cahn equation has been widely used in modeling phase field problems arising in materials science
and fluid dynamics. Recently, the fractional analogue of the Allen–Cahn equation was proposed to study phase
transition in the presence of anomalous diffusion [30]. Here, we apply our method to study the benchmark problem –
coalescence of two “kissing” bubbles – in the phase field models. Consider the fractional Allen–Cahn equation [30]:

∂t u(x, t) = −(−∆)
α
2 u −

1
δα

u(u2
− 1), x ∈ Ω , t > 0, (5.6)

u(x, t) = −1, x ∈ Ω c, t ≥ 0, (5.7)

where the domain Ω = (0, 1)d , and u is the phase field function. The constant δ > 0 describes the diffuse interface
width. The initial condition is chosen as

u(x, 0) = 1 − tanh
(

d(x, x1)
δ

)
− tanh

(
d(x, x2)
δ

)
, x ∈ Rd , (5.8)

with the function d(x, xi ) = |x − xi |−0.12. Initially, two bubbles, centered at x1 and x2, respectively, are osculating
or “kissing”. Note that the boundary condition in (5.7) is nonzero constant. Letting ū = u + 1, we can rewrite
the problem (5.6) as an equation of ū with the extended homogeneous boundary conditions. Here, we discretize
the problem (5.6)–(5.8) by our finite difference methods in space and the Crank–Nicolson method in time. In each
iteration step, we use the conjugate gradient (CG) method coupled with the FFT-based algorithms for matrix–vector
multiplication to solve the linear system.

Fig. 4 shows the time evolution of the two bubbles in both classical (non-fractional) and fractional Allen–Cahn
equations with δ = 0.03. In our simulations, we choose the mesh size h = 1/1024 and the time step τ = 0.0005.
Initially, the two bubbles are centered at x1 = (0.4, 0.4) and x2 = (0.6, 0.6), respectively. In the classical case, the
two bubbles first coalesce into one bubble, and then this newly formed bubble shrinks and are eventually absorbed
by the fluid (see Fig. 4 top row). The dynamics in the fractional cases with α > 1 are similar to those in the classical
cases, but the coalesceness and disappearing of the two bubbles become much slower — the smaller the power α,
the slower the dynamics. By contrast, if α < 1 the two bubbles do not merge, and they finally vanish at the same
time. It takes much longer time for two bubbles to vanish for α < 1 than that taken for α > 1. The time evolution
of the mass in Fig. 5 further confirms these observations.
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Fig. 4. Dynamics of the two kissing bubbles in the classical Allen–Cahn equation (top row) and its fractional counterparts with α = 1.9
(second row), 1.5 (third row), and 0.7 (last row).

Fig. 5. Time evolution of the mass
∫
R2 |u|dx, where α = 2 represents the classical cases.

To demonstrate the efficiency of our methods, we present in Table 6 the CPU time that is used to solve the
2D fractional Allen–Cahn equations for various numbers of spatial unknowns M = Nx Ny , where the time step
τ = 0.0005 is fixed. It shows that for fixed M , the CPU time takes longer for larger α, because the stiffness matrix
from larger α has bigger conditional number and it will affect the CG iterations. Furthermore, due to the symmetric
block Toeplitz structure of the stiffness matrix, the storage memory requirement is O(M). Comparing to the 2D
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Fig. 6. Dynamics of the two kissing bubbles in the 3D fractional Allen–Cahn equation with δ = 0.03 and α = 1.9. Top row: Isosurface
plot for (u = 0.5); Bottom row: u(x, y, z = 0).

Table 6
CPU time (in seconds) used in solving the 2D fractional Allen–Cahn equations till
t = 0.015.

CPU time (s) M = 10242 M = 5122 M = 2562 M = 1282

α = 1.9 25728 4497 456 86
α = 1.5 4896 974 112 27
α = 1 648 170 30 9
α = 0.7 430 107 24 7

cases, the computations of the 3D fractional Allen–Cahn problems demand more computational costs and storage
memory. Thanks to the fast algorithms utilizing the multilevel Toeplitz structure, our method enables us to simulate
the 3D problems efficiently. Fig. 6 shows the isosurface plots of the solution u and their contour plots u(x, y, 0),
for different time t . Here, the initial center of the two bubbles are x1 = (0.4, 0.6, 0.5) and x2 = (0.6, 0.4, 0.5),
and the parameters δ = 0.03 and α = 1.9. It shows that the two initially kissing bubbles experience a process of
merging, shrinking and finally disappearing, a similar process to the 2D cases observed in Fig. 4.

6. Conclusions

We proposed accurate and efficient finite difference methods to discretize the two- and three-dimensional integral
fractional Laplacian (−∆)

α
2 and applied them to solve the fractional Poisson equation and fractional Allen–Cahn

equation. The key idea of our method is to introduce a splitting parameter γ ∈ (α, 2] and then reformulate the
fractional Laplacian as the weighted integral of a central difference quotient, so as to avoid directly approximating
the hypersingular kernel. Both numerical analysis and simulations showed that our methods have the accuracy of
O(hε) for u ∈ C⌊α⌋, α−⌊α⌋+ε(Rd ), while O(h2) for u ∈ C2+⌊α⌋, α−⌊α⌋+ε(Rd ), with 0 < ε < 1 + ⌊α⌋ − α. To the best
of our knowledge, the proposed methods are the first finite difference methods for the high-dimensional integral
fractional Laplacian (1.1). Numerical studies on the fractional Poisson problem and fractional Allen–Cahn equation
were presented to test the accuracy and efficiency of our methods. It showed that our finite difference methods
have the second order of accuracy in solving the fractional Poisson problem, if the solution satisfies u ∈ C1,1(Rd ).
Numerical studies on the fractional Allen–Cahn equation suggested that our methods can be efficiently implemented
via the fast Fourier transform to solve the fractional PDEs, which significantly reduces the computational costs and
storage memory requirements in practice.
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