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ABSTRACT

Disorder can have a wide variety of consequences for the physics of phase
transitions. Some transitions remain unchanged in the presence of disorder while
others are completely destroyed. In this thesis we study the effects of disorder on
several classical and quantum phase transitions in condensed matter systems. After a
brief introduction, we study the ferromagnetic phase transition in a randomly layered
Heisenberg magnet using large-scale Monte-Carlo simulations. Our results provide
numerical evidence for the exotic infinite-randomness scenario.

We study classical and quantum smeared phase transitions in substitutional
alloys A;_,B,. Our results show that the disorder completely destroys the phase
transition with a pronounced tail of the ordered phase developing for all composi-
tions x < 1. In addition, we find that short-ranged disorder correlations can have a
dramatic effect on the transition. Moreover, we show an experimental realization of
the composition-tuned ferromagnetic-to-paramagnetic quantum phase transition in
Sri_,Ca,RuOs;.

We investigate the effects of disorder on first-order quantum phase transitions
on the example of the N-color quantum Ashkin-Teller model. By means of a strong-
disorder renormalization group, we demonstrate that disorder rounds the first-order
transition to a continuous one for both weak and strong coupling between the colors.

Finally, we investigate the superfluid-insulator quantum phase transition of
one-dimensional bosons with off-diagonal disorder by means of large-scale Monte-
Carlo simulations. Beyond a critical disorder strength, we find nonuniversal, disorder-

dependent critical behavior.
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1. INTRODUCTION

1.1 PHASE TRANSITIONS AND QUANTUM PHASE TRANSITIONS

Phase transitions are one of the most active condensed matter research ar-
eas, undergoing intensive investigations by both theorists and experimentalists. The
main question is how the macroscopic properties of many-particle systems change
under the variation of a control parameter such as temperature, pressure, magnetic
field or disorder. The phase transitions occur when the system reaches a point of
non-analyticity in the free energy F. Based on the continuity or discontinuity of
the free energy derivatives, the phase transition can be classified as a first-order
or a second-order transition. First-order phase transitions, at which a first deriva-
tive is discontinuous, are distinguished by latent heat and phase coexistence on the
phase boundary. Second-order phase transitions are also known as continuous phase
transitions because the first derivatives of the free energy, such as entropy and mag-
netization, are continuous at the transition point while the second derivatives, such
as magnetic susceptibility and specific heat, show a divergence in the control param-
eter space. Non-analytic properties of systems near a second-order phase transition
are known as critical phenomena while the point of transition in the phase diagram
is called the critical point. At absolute zero temperature, the phase transition can
be driven by a non-thermal control parameter such as pressure, magnetic field, and
disorder. This type of phase transition is called quantum phase transition because it
occurs due to quantum fluctuations [1, 2, 3, 4, 5].

1.1.1. Order Parameter and Landau Theory. In 1937, Landau [6, 7, 8, 9]
developed a theory of phase transitions by introducing the general concept of an order

parameter, a macroscopic thermodynamic quantity, which is zero in a disordered phase



and develops a finite value in an ordered phase. The magnetization m is an order
parameter in the case of a ferromagnetic phase transition.

Landau theory is a thermodynamic approach. It starts from the free energy
in terms of the order parameter Fj(m). Landau suggested that the free energy is
an analytic function of the order parameter and that the critical phenomena can be
explained by expanding the free energy F7(m) in a power series of a spatially uniform

order parameter m (m is small at the vicinity of a critical point)

Fr(m) = Fy — hm +rm? +vm® +um* + O(m®). (1.1)

Here r, v, u are m-independent system parameters and h is an external field conjugate
to the order parameter. If the system is invariant under the symmetry transformation
m — —m, the coefficients of the odd powers of m vanish. The physical state is
obtained by minimizing Fy(m) with respect to m. In the absence of an external
magnetic field h, the minimum free energy for r < 0 is always located at m # 0
(ordered phase) and at m = 0 for r > 0 (disordered phase). At r = 0, the transition
from m = 0 to m # 0 occurs discontinuously for v # 0 (first-order phase transition)
and continuously for v = 0 (second-order phase transition). Thus, 7 is measuring
the distance from the critical point in the control parameter space, r o« (T — Tp)
for a thermal transition. In the case of a second-order phase transition, the order
parameter vanishes as m = ++/—r/2u when r — —0. Landau theory thus predicts
the order parameter singularity m ~ |r|? with 8 = 1/2 for all critical points. This is
an example of the so-called super-universality of Landau theory.

The deficiency of Landau theory is that it assumes that there are no fluctua-
tions in the order parameter about its average value. It turns out that the validity of
this assumption depends on the system’s dimensionality d and on the number of the
order parameter components n since the order parameter fluctuations decreases with

increasing d and n. This leads to the introduction of the upper critical dimension d;



and the lower critical dimension d_. Above d}, fluctuations can be neglected and
Landau theory provides the correct description of critical behavior. On the other
hand, below d_, the fluctuations are sufficiently strong to prevent any ordered phase,
and thus there is no phase transition. If d < d < d, the phase transition exists but
with a critical behavior different from Landau theory predictions. For the thermal
ferromagnetic transition, for example, df = 4 for any symmetry and d; = 2 or 1,
respectively, for Heisenberg and Ising symmetries.

The failure of Landau theory below df can be overcome by generalizing the
Landau order parameter m to a coarse-grained position-dependent field ¢(z). It is
not a microscopic variable but represents the average of the order parameter over
some small region of space. The Landau free energy (1.1) can now be generalized to

the Landau-Ginzburg-Wilson free energy functional

Fuow = [ @' [[96(a) + r6*(2) + udt(z) ~ ()] (1:2)

Here, the term |V¢(z)|? punishes rapid spatial variations of the order parameter. The
partition function can be found by integrating over all possible fluctuations in ¢(x),

which leads to the functional integral,
Zrow = /DW]@_FLGW' (1.3)

1.1.2. The Scaling Hypothesis and Universality. In general, observables
exhibit power-law behavior in the vicinity of the critical point (similar to the order
parameter in the Landau theory), characterized by critical exponents.

Consider, for example, the fluctuations of the order parameter. They are

characterized by its correlation function

G(z) = (o(2)9(0)) (1.4)



which is generically short-ranged in the bulk disordered phase and decays exponen-

tially with separation x as

G(x) ~ e lol/E, (1.5)

Here ¢ is the typical length scale of correlations (correlation length). When the critical
point is approached, » — +0, the correlations become longer and longer ranged; &
diverges at the transition point,

E~r™ (1.6)

where v is the correlation length critical exponent. The diverging correlation length
suggests that it is the only length scale affecting thermodynamic observables at crit-
icality.

The crucial idea of scaling theory is that thermodynamics properties are in-
variant under a rescaling of all length by positive length scale factor b if the exter-
nal parameters are adjusted such that the correlation length retains its old value.
This leads to a homogeneity relation for the singular part of the free energy density
f=—(T/V)nZ,

fs(r, h) = b fo(rbMY | hb¥n) (1.7)

where y, is another critical exponent [10]. As the scale factor b is arbitrary, we can

set it, for example, equal to r~”. Inserting this into the free energy density, we obtain

rYYn

ﬁ@@:Wm(h) (13)

where 1), is a scaling function that depends on the combination hr~"¥» only. Anal-
ogous homogeneity relations can be derived for other thermodynamic quantities by

taking the appropriate derivatives of f(r, h):

m(r,h):rﬁMs( i ) x(r,h) =r77x, <7~Zm)’ C(r,h) =r=*C, (TZM) (1.9)

rvYn



where m, y and C are the order parameter, susceptibility, and specific heat, respec-
tively. Here 3, v, and « denote the order parameter, susceptibility, and specific heat
critical exponents. For example, the zero field magnetization m can be found by

differentiating the free energy with respect to h giving

m|h:0 _ afs _ rdu—uthS(O) e 7‘6. (110)
oh ).,

Therefore, by comparison, § = dv — vy,. Similarly, at the critical point (r = 0),
m ~ h'/% ~ p(d=vn)/vr  Because the free energy (1.8) contains only two independent
critical exponents, the other critical exponents are related by the so-called scaling

relations

0—1= % Widom’s Identity (1.11)
2+v+a=2 Rushbrooke’s Identity. (1.12)

Finally, consider the scaling of the correlation function G(x,r, h),
G(z,r,h) = b 2PV Gy(xb !, rb"Y  hbvr) ~ @72 (1.13)
for x < €. As the susceptibility is given by the following integral
3
X ~ / dzG (x), (1.14)
1

this leads to

vy=v(2—-n) Fisher’s identity. (1.15)

Now, if one uses the correlation length to scale the free energy (b = €), one obtains

fo ~ % ~ 127 with

2—a=dv Josephson’s Identity. (1.16)



All these scaling relations hold below df where the critical behavior is dominated by
fluctuations. In dimensions higher than the upper critical dimension d;, the critical
behavior is governed by the conventional mean field theory (MFT) where all the
critical exponents assume dimension independent values. Therefore, the Josephson
relation (also known as the hyperscaling relation) which depends on the dimensionality
d is valid only below the upper critical dimension, d < d.

1.1.3. Finite-Size Scaling. In general, a sharp phase transition can only
emerge for infinite system size (thermodynamic limit) where the correlation length
is the only relevant length scale. The effects of a finite system size on the critical
behavior are very important for computational applications and also for many exper-
iments, for instance in nano-materials. Finite-size effects are quantitatively described
by the finite-size scaling theory [11, 12, 13]. This theory starts from the observation
that the inverse linear system size L acts as an additional parameter similar to the
reduced temperature r on the external field h which drives the system away from the
critical point at L = oco. For sufficiently large but finite systems, the finite-size effects
are governed by the ratio L/{., only. Thus, the classical homogeneity relation (1.7)

for the free energy density [10] can by generalized to

f(r by L) = b= f (rbY" hbve, Lb1). (1.17)

As b is arbitrary, one can set b = L and h = 0 to obtain f(r, L) = L% ;(r L'/") where
O (rL'") is a dimensionless scaling function. Let us apply this scaling form to a situ-
ation in which the finite-size system does have a sharp phase transition (for example,
a layered system in which only the thickness is finite). As this transition corresponds
to a singularity in ©f at some nonzero argument z. = r.LY" . its transition tempera-
ture 7T,.(L) is shifted from the bulk value T,o(L = o0) as T.(L) = Ty + AL™/". Here,
A is non-universal constant. This finite-size scaling argument is only valid below the

upper critical dimension d of the phase transition. Above d, finite-size scaling can



be generalized and the shift in the critical temperature is given by

T.(L)=Tgo+ AL? (1.18)

where the shift exponent ¢ is in general different from 1/v.

This finite-size scaling theory is widely used to analyze computer simulations
data of phase transitions. By fitting the simulation data to finite-size scaling forms,
we can get values of the critical exponents which are required to describe the critical
behavior.

1.1.4. Quantum Phase Transitions. So far, we have discussed phase tran-
sitions occurring at nonzero temperatures. In 1976, Hertz [14] pioneered the investiga-
tion of a new class of phase transitions occurring at zero temperature. He started from
the fact that the critical temperature 7T, of a given transition depends on other pa-
rameters such as the doping and external magnetic field. In some systems, the critical
temperature can be suppressed without limit, leading to 7. = 0. This can be seen in
Figure 1.1 where the classical critical point (dotted line) decreases continuously with
increasing nonthermal parameter g. At g. where the transition temperature reaches
T = 0, there will be no thermal fluctuations, and thus the order-disorder phase tran-
sition must be driven by nonthermal fluctuations. At this point, quantum mechanics
starts playing an important role. The zero-temperature phase transition is driven by
quantum fluctuations [3] which stem from Heisenberg’s uncertainty principle. It is
thus called a quantum phase transition.

The basic phenomenology of a second-order quantum phase transition is sim-
ilar to that of a second-order classical transition. As the phase transition point, i.e.,
the critical point, is approached, the spatial correlations of the order parameter fluc-
tuations become long-ranged. Close to the critical point their typical length scale,

the correlation length &, diverges as & ~ r~” where v is the correlation length critical
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Figure 1.1: Schematic phase diagram in the vicinity of a quantum critical point
(QCP). The dotted line is the finite-temperature phase boundary while
the dashed lines are crossover lines separating different regions within the
disordered phase.

exponent and 7 is some dimensionless distance from the quantum critical point. Anal-
ogously, the typical time scale for a decay of the fluctuations is the correlation time
&-. As the critical point is approached the correlation time diverges as &, ~ £* ~ r=*
where z is the dynamical critical exponent. Correspondingly, the typical frequency
scale w, goes to zero and with it the typical energy scale hw,. ~ r”*.

An argument for explaining when quantum phase transitions become impor-
tant can be achieved by distinguishing fluctuations with predominantly thermal and
quantum character. Because of the competition between the thermal energy kgT
and the quantum energy scale hw., quantum fluctuations are important as long as
hw. > kgT'. The zero-temperature phase transition is thus completely controlled by
quantum physics. Consequently, transitions at zero temperature are called quantum
phase transitions. However, if the phase transition occurs at a finite temperature, it

is entirely classical even if the properties of the order state are determined quantum



mechanically because w. — 0 at criticality. The crossover to quantum behavior oc-
curs when |r| > r, oc T2/¥*, see Fig. 1.1. Here, r is the reduced distance from the
quantum critical point along the quantum tuning parameter axis, 7 = (g — g)/9e-
To generalize the homogeneity law (1.7) to the case of a quantum phase tran-
sition, one can consider a system characterized by a Hamiltonian H = Hy;y, + Hpo.
Because the quantum Hamiltonian terms Hy;, and H,, in general do not commute,
the partition function does not factorize, Z # Zj;,Zpor. However, the canonical den-

H/ksT can be reformulated to look exactly like a time evolution operator

sity operator e
in imaginary time 7. This can be achieved by identifying 1/kgT = 7 = —it/h where
t denotes the real time. This introduces the so-called imaginary time direction into
the system.

As we will see later in this subsection, since the extension of the system in
imaginary time direction is infinite at zero-temperature (1/kgT = 00), the imaginary
time acts similarly to an additional spatial dimension. Using the fact that the time
and the length scales are related by the dynamic critical exponent z as &, ~ &7, one

can adapt the homogeneity relation (1.7) to the case of a quantum phase transition.

It therefore reads

f(r,h) = b= =) btV pp¥n). (1.19)

Comparing the homogeneity laws in a thermal case (1.7) and a quantum case (1.19)
explicitly shows that a quantum phase transition in d dimension and a classical phase
transition in d + z spatial dimension are equivalent.

The behavior at small but finite temperatures is determined by the crossover
between the quantum critical behavior at T" = 0 and classical critical behavior at
non-zero temperatures, see Fig. 1.1. The crossover from quantum to classical be-
havior occurs when the correlation time &, reaches 1/(kgT'). The quantum-classical

crossover can be observed by fixing the temperature at a small finite value and tuning
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the nonthermal parameter g from the quantum-disordered regime all the way to the
ordered phase.

The quantum homogeneity law (1.20) can be generalized to finite temperature
by including the temperature as an explicit parameter which scales like inverse time

(imaginary time). Thus, the free energy reads

f(r,h) = b= (b hpve TH?). (1.20)

The quantum critical point also controls the so-called quantum critical re-
gion [15]. This region is located at g. but at relatively high temperatures where the
fluctuations are thermal. In this region the system is driven away from criticality at
ge by the temperature (i.e., the temperature protects the system from being singular).
Therefore the temperature scaling at the quantum critical point can be observed by
carrying an experiment that lowers the temperature at fixed g = g.. Because statics
and dynamics are coupled, the scaling properties of static quantities in the quantum
critical region are also affected by the dynamical scaling exponent z of the quantum
phase transition. Thus, quantum criticality is not just an abstract concept, it can be
observed experimentally.

Now, we briefly demonstrate the quantum-to-classical mapping method which
connects the observables of a d-dimensional quantum system to that of a (d + 1)-
dimensional classical system. Technically, this method relies on factorizing the canon-
ical quantum partition function Z into kinetic and potential energy parts even if they
are coupled (do not commute)! This can be performed as follows: One can rewrite
the partition function using the Trotter decomposition [16, 17] as

Z = Tre kT — Jim zV) (1.21)

N—o0
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where ZV) is the N-approximant of the partition function given by
ZW) = 1r [e_TH/N}N =1Tr [e‘ATH}N. (1.22)

where A7 = 7/N. The commutator of the kinetic and potential energies is obtained

by including the imaginary time increment A7 in the calculations which leads to
[AT Hyiny AT Hpot) = (AT)* [ Hyin, Hpot) = 0. (1.23)

Thus, since A7Hy;, and A7H,, commute to leading order in 7, the Trotter decom-

(A+B) A_B

position e = eAePe1/2AB] can be applied to factorizing the N-approximant of

the partition function as
Z(N) =Tr [B_ATHkine_ATHpot]N . (124)

By inserting N complete sets of eigenstates for the Hy;, terms, the partition function

can be written as

N
Z(N) _ Z H o~ ATHyin (@) <{aj}n |€—A’T’Hpot(0lj)| {OZj}n+1> . (1.25)

{ajn} n=1

Here, n is the index of the imaginary time. To get the classical Hamiltonian of the
system, we need to evaluate the off-diagonal terms (H,, terms in Eqn. 1.25). As an

example, consider the transverse-field Ising model,

H=-=>"J;S;iS; =Y St (1.26)

<iyj> i

one of the famous models in the theory of quantum phase transition. After the

quantum-to-classical mapping, the classical Hamiltonian of the transverse-field Ising
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model is found to be

Helass = — Z jiSiZ,n iz-s—l,n - Zj: zZ,n iz,n+1 (1.27)
where J; = 3.J;;/N and J7 = Iny/coth(Bh;/N) are the coupling in the space and

time directions, respectively.

1.2 QUENCHED DISORDER EFFECTS

Completely pure systems rarely exist in the real world and thus many investi-
gations focus on disordered systems. Disorder can appear in various forms including
impurity atoms and crystal defects. This work focuses on time-independent disorder
(quenched disorder). This means the impurities and defects are frozen-in, in contrast
to so-called annealed disorder which fluctuates on short time scales. Moreover, we
consider weak (random-7, or random-mass) disorder, whose main effects are spatial
variations of the coupling strength.

Random-7, disorder does not change the bulk phases qualitatively and it only
affects the phase transition point. Random-T, disorder can be considered in a LGW
theory by making the bare distance from the critical point a random function of
spatial position, r — 7o 4+ dr(x). For example, a d-dimensional LGW theory in the

presence of disorder reads

Frow = /ddm [[Vo()]* + (ro + 0r(z))¢*(z) + ug*(z) — ho(z)]. (1.28)
Adding weak, random-T, quenched disorder to a clean system that exhibits a
phase transition raises the following questions:

(a) Will the transition remain sharp (associated with a true singularity in free energy

F), or it will be smeared out?
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(b) Will the order of the transition (first-order vs. continuous) change?

(c) If the transition remains sharp and continuous, does the disorder change the
critical behavior quantitatively (different universality class with new exponents)

or qualitatively (exotic non-power law scaling)?

(d) Does the disorder only affect the transition itself or also the behavior in its vicin-

ity?

1.2.1. Harris Criterion. Harris [18] derived a criterion for the stability of
a clean critical point against weak, random-T7., disorder. He divided the system into
blocks of volume V = &? [13]. Each block i behaves independently so that it has
its own effective local critical temperature T,; found by averaging r + dr(x) over the
volume of block 7, see Fig. 1.2. Harris observed that a sharp phase transition can only
occur if the standard deviation Ar of these local critical temperatures from block to
block is smaller than the global distance from the critical point r. For short-range

correlated disorder, the standard deviation of Ar can be found using the central limit

—d/2 v

theorem yielding Ar ~ ¢ By considering the definition of & ~ r™ we have
Ar ~ r®/2 Thus, a clean critical point is perturbatively stable for r — 0, if the
clean critical exponents fulfill the inequality r%/? < r or dv > 2.

The behavior of the disorder strength with increasing the length scale, i.e,
under coarse graining, can be used to classify critical points with quenched disor-

der [19, 20, 21] as:

(i) The Harris criterion is fulfilled. In this, case the relative disorder Ar/r decreases
under coarse graining, and the system becomes asymptotically homogeneous at
large scales. Consequently, the critical behavior of the dirty system is identical
to that of the clean system. An example of this class is the three dimensional

Heisenberg model which has v = 0.698 [22] for both clean and dirty cases.
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Figure 1.2: Schematic depiction of a random-T, model shows the fragmentation of the

(i)

(i)

system by disorder into independent blocks with different local critical
temperature.

The relative disorder strength increases to a finite value, i.e., the system stays
inhomogeneous at large length scales. In this case, quenched disorder generally
makes quantitative changes to the critical behavior of the clean system. The
phase transition stays sharp and features power-law scaling but with new critical
exponents, i.e., the system is in a new universal class. The three-dimensional
Ising model is an example of this class with v = 0.627 in the clean case [23] and
a different value v = 0.684 in the disordered one [24]. Note that the new value

of v = 0.684 satisfies the inequality dv > 2.

The relative disorder strength increases without limit under coarse graining. In
this class, quenched disorder makes qualitative changes to the critical behavior
of the clean system, i.e., the scaling is qualitatively modified to be exponential
instead of power-law. This class was first found in the McCoy-Wu model [25, 26]
(two-dimensional Ising model with disorder perfectly correlated in one dimen-

sion) or in the one-dimensional random quantum Ising model.
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The critical point of class (iii) is known as an infinite-randomness critical
point [19, 27, 28]. Its macroscopic observables have extremely broad probability
distributions whose widths diverge with system size. Consequently, the averages
of the observables are dominated by rare events, e.g., spatial regions with atypical
disorder configurations. This type of critical point was fully understood only when
Fisher [28] solved the random transverse-field Ising chain using the Ma-Dasgupta-Hu
real space renormalization group [29, 30].

1.2.2. Rare Regions and Griffiths Effects. In the last subsection, it was
mentioned that if the critical point belongs to Harris class (iii), it will be dominated
by rare events. In this subsection, we explain the physics of these rare events in more
detail, using a diluted classical ferromagnet as an example. The random dilution
reduces the clean system’s critical temperature T,y to T,. In a sufficiently large system,
one can find arbitrarily large regions that are devoid of impurities and are known as
rare regions (RR), see Fig. 1.3. For temperatures between the clean and disordered
critical temperatures, these regions show local magnetic order even though the bulk
system is globally in the paramagnetic phase (disordered phase). Griffiths [31] found
that these rare regions lead to a singularity in the free energy, the Griffiths singularity;,
in the entire temperature range T, < T' < T,y which is now known as the Griffiths
region or Griffiths phase [32]. Analogous singularities also exists on the ordered
side of T,.. The probability of finding a rare region depends on its volume Vizp as
P(Vrg) ~ exp (—pVgr) where p depends on the impurity concentration. In addition,
the dynamics of rare regions are very slow because flipping them requires a coherent
change of the order parameter over a large volume Vgg. In classical systems with
short-ranged disorder, the Griffiths singularity in the free energy is only an essential
one [33, 34, 35, 36] implying very weak thermodynamic Griffiths effects. The rare
regions effects can be qualitatively increased by long-range correlated disorder. In
particular, if the disorder is perfectly correlated in some spatial direction, the rare

regions are extended objects in space which generally enhances their effects.
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Figure 1.3: Sketch of a diluted magnet. The shaded region is devoid of impurities
and therefore acts as a piece of the clean bulk system.

The significance of rare regions in a given system can be characterized based
on the competition between their probability P(Vzg) and their contributions to the
thermodynamic observables. We know how their probability exponentially depends
on their volume, P(Vgg) ~ exp (—pL%y), so we need to know how the thermodynamic
quantities depend on Lgg. For this purpose, let us consider a rare region that is locally
in the ordered phase. Its bare distance from criticality in the LGW theory is r» < 0.
Three different scenarios emerge depending on the effective dimensionality drg of the

rare regions [21, 37]:

(i) For drr < d_, the rare region can not undergo the phase transition by itself.
Thus, its renormalized distance from criticality 7(Lggr) > 0 decreases as a power
of Lrr for Lrr — oo. Therefore, the contributions of the rare region to the
thermodynamic quantities increase at most as power-laws in Lrr which can not
overcome the exponential reduction in p(Vgzg). Thus, all the rare regions effects

are exponentially weak at the critical point.
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(ii) For d = d_, the rare region still can not undergo the phase transition by itself
but the renormalized distance form the criticality 7 decreases exponentially with
Vrr. Its contributions to observables therefore grow exponentially with Lgg
which can overcome the suppression in P(Vgg). The resulting effect is that the
rare regions dominate the critical point leading to exotic exponential scaling
(e.g., infinite-randomness critical point of McCoy-Wu model) and power-law

(quantum) Griffiths singularities.

(iii) For dgr > d_, the rare region can undergo the phase transition by itself and
independently from the bulk system. This case implies that the dynamics of
the locally ordered rare regions completely freezes leading to a true static order
parameter. Because the transition point depends on Lgg (see section 1.2.3),
different rare regions can order at different values of the control parameter.
These local phase transitions destroy the sharpness of the global second-order
phase transition leading to a smeared phase transition. The ordered phase
features an exponential tail. The three-dimensional Ising model with planar

defect (layered Ising model) is an example of such behavior [38, 39, 40].

Indications of quantum Griffiths singularities (class ii) were recently observed
in experiments on some metallic systems such as magnetic semiconductor
Fe; ,Co,Sy [41, 42, 43], Kondo lattice ferromagnet CePd;_,Rh, [44, 45], and transi-
tion metal ferromagnet Ni;_,V, [46, 47].

1.2.3. Smeared Phase Transition. In the last subsection, we have seen
that disorder smears the global phase transition if the rare regions can undergo the
transition independently, i.e., if their dimensionality drr > d_ . This can happen both
for thermal phase transitions (see e.g., [38, 39, 40]) and for quantum phase transitions
(see e.g., [48, 49, 50]).

The first route to a smeared phase transition involves extended defects. At

nonzero temperatures (i.e., for thermal transitions), a rare region can only undergo
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a true phase transition if it is infinitely large in at least one dimension. Thus, the
smearing of the thermal phase transition requires extended defects of a dimensionality
larger than d (disorder perfectly correlated in some of the directions). For example,
the layered Ising model with planar defects has rare region dimensionality drr = 2
larger than the lower critical dimensionality of Ising symmetry d; = 1. This model
was shown to have a smeared phase transition [39, 40]. On the other hand, the same
layered system but with Heisenberg spin symmetry has drr = d. = 2. We will
show in this thesis that its transition is not smeared but sharp and governed by an
infinite-randomness critical point [51].

At zero-temperature quantum phase transitions, the quantum-to-classical map-
ping relates the d-dimensional quantum system to a (d+1)-dimensional classical sys-
tem where the extra dimension represents imaginary time 7. Quenched disorder is
time-independent, thus it is perfectly correlated in time direction. These strong corre-
lations dramatically increase the effects of the rare regions because they are infinitely
extended in the time direction (see Fig, 1.4) even if they are finite in space. For exam-
ple the d-dimensional random quantum Ising model maps onto a (d + 1)-dimensional
classical Ising model. Point defects in the quantum model correspond to line defects
in the classical one. In this case dgr = 1 < d_, thus the transition is still sharp.
However, line defects in the quantum model lead to plane defects in classical one and
thus a smeared phase transition.

The second route to a smeared phase transition involves damping of the order
parameter fluctuations and works only for zero-temperature quantum phase transi-
tions. The damping of the order parameter fluctuations in a metal is an example of
this case. This damping is caused by the coupling between the magnetic modes and
the gapless particle-hole excitations in the metal. Quantum phase transitions in met-
als are theoretically approached by the so-called Hertz-Millis theory [14, 52] which can
be derived from an appropriate microscopic Hamiltonian of interacting electrons. By

integrating out the fermionic degrees of freedom in the partition function in favor of
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Figure 1.4: Sketch of the rare region in a quantum system. The rare region is perfectly
correlated in imaginary time direction 7.

the order parameter field ¢, one can obtain the free energy functional S[¢]. Assuming
that the resulting free energy functional S[¢] can be expanded in a power series in the
order parameter field ¢ with spatially local coefficients yields a (d + 1)-dimensional
Landau-Ginzburg-Wilson (LGW) order parameter field theory [53, 54, 55, 56]. For
definiteness, let us consider the itinerant antiferromagnetic transition at d > 2. The

Landau-Ginzburg-Wilson free energy functional of the clean transition reads [14]

S = / drd*ydrdr' ¢(x, )T (x, 7,5, 7)b(y, 7)) +u / drdret(x, ) (1.29)

where I'(x,7,y,7’) is the bare interaction (bare two-point vertex) and its Fourier

transform has a linear dependence on the Matsubara frequency w,, as

I(q,wn) =7+ £q° + 7(q) |wnl- (1.30)
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Here, r is the bare distance from criticality, &, is a microscopic length scale, and the
dynamic term ~(q)|w,| accounts for the damping of the order parameter fluctuations
due to the excitation of fermionic particle-hole pairs. This linear dependence on
w, implies that the so-called Landau damping is Ohmic. In contrast, undamped
dynamics would lead to an w? term.

Weak, random-mass disorder can be introduced by making r a random func-
tion of position, r — 79 + or(x) [14, 57]. The rare regions in this system are large
spatial regions where the local r is smaller than its average value. The significant
difference between the itinerant magnets and localized spin systems is in the dynam-
ics of the rare regions. Millis, Morr, and Schmalian [58, 59] explicitly calculated the
tunneling rate of a locally ordered rare region in an itinerant Ising magnet. Their
results showed that the tunneling rate vanishes for sufficiently large rare regions. This
means, these rare regions completely stop tunneling, and thus they undergo a true
phase transition. In other words, the low-energy behavior changes qualitatively in
the presence of damping. In particular, each locally ordered cluster (Griffiths rare
region) corresponds to a dissipative two-level system [60] whose dissipation strength
increases with its size. This model undergoes a quantum phase transition from a
fluctuating ground state (weak dissipation) to a localized ground state (strong dis-
sipation). Thus, if rare regions are sufficiently large, they freeze and develop static
order [58, 59]. The same result can be obtained from the quantum-to-classical map-
ping [48]. In the equivalent classical system (quasi-one-dimensional Ising model), the
rare region is finite in the space directions and infinite in the time-like direction. The
linear frequency dependence in the two-point vertex I' is equivalent to a long-range
interaction in imaginary time of the form (7 — 7/)72. Each rare region is thus equiv-
alent to one-dimensional Ising model with a 1/z? interaction. This model is known
to have a phase transition [61, 62]. Thus, true static order can develop on those rare

regions which are locally in the ordered phase. As a result, the global phase transition
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in the itinerant Ising magnet is smeared [48] by the same mechanism as the transition
in a classical Ising model with planer defects.

Moreover, smeared phase transitions can be modified by short-range spatial
disorder correlations (changes in the exponents that characterize the order parameter
and the critical temperature), thus systems with uncorrelated disorder and short-
range correlated disorder behave differently [63]. This stems from the fact that form-
ing Griffiths rare-regions is easier in case of short-range correlated disorder than for
uncorrelated disorder leading to an enhancement of the smeared phase transition’s
tail. It is in contrast to continuous phase transitions, where both uncorrelated and
short-range correlated disorder lead to the same critical point. The reason is that
smeared phase transitions are governed by a finite length scale (the minimum size of
ordered rare region) whereas the critical behavior emerges at infinitely large length
scales.

1.2.4. Rounding of First-Order Phase Transitions. All previous discus-
sions about quenched disorder effects were based on assuming that the clean system
undergoes a second-order phase transition. Thus, the obvious question is what are
the effects of quenched disorder on a first-order phase transition? As first-order phase
transitions are characterized by phase coexistence, we can ask, is macroscopic phase
coexistence at the transition point still possible in the presence of disorder?

Imry and Ma [64] first attacked this question by extending Peierls argument *
(65, 66] to the case with randomness. They noticed that disordered systems tend to
lower their free energy by forming domains of the competing phases. The free energy
difference due to forming a domain contains two contributions, bulk and surface terms.

Consider a clean system undergoing a first-order phase transition between
phases A and B. At the transition point, the Gibbs free energy densities are identical

fa = fe = fo. In the presence of disorder, one phase is locally preferred over the

*in order to deform the ground state {1} in the interior of a contour C to another ground state
{}} costs a “surface energy” 2|C|, while by symmetry, the “bulk energies” of the two ground states
are the same.
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other

fa(x)=fo+df(x),  frlx)=fo—3df(v) (1.31)

where ¢ f(z) is a random quantity with standard deviation w. The domain wall
between the A and B phases has a surface energy (energy per area) . For an Ising
magnet, the surface energy between the up and down phases at low temperatures is

o = 2J. The free energy density fq = fourf + fowr of a domain of size L, is given by

(o} W

The first term is the domain wall energy. The second term stems from aligning the
domain with the average 6 f(x); the Lcdl/ ? dependence stems from the central limit
theorem.

To find the minimum size L7 for a stable ordered phase, one can differentiate

the free energy density, Eqn. 1.32, with respect to Ly to get

2
min 20 2=

For d > 2, the surface term dominates with an unphysical peak at L, smaller than
the lattice space a; and the minimum free energy can be reached only at L7 — oo,
see Fig. 1.5. Thus, the formation of finite-size domains is unfavorable, and quenched
disorder does not round the first-order phase transition for d > 2. If d < 2, the
minimum free energy occurs for finite domains with typical linear size L7". Con-
sequently, disorder prevents macroscopic phase coexistence, and thus destroys the
first-order phase transition. Often, this results in a continuous phase transition, but
other scenarios such as intermediate phases or a complete destruction of the transi-
tion cannot be excluded. For d = 2, the two parts of free energy density f; compete

and a more rigorous analysis is required. Aizenman and Wehr [67] rigorously proved
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Figure 1.5: Sketch of the free energy density vs. domain linear size.

that phase coexistence cannot be found for d < 2. Greenblatt et al. [68] extended the

Aizenman-Wehr theorem to quantum systems at zero temperature.

1.3 RENORMALIZATION GROUP THEORY

The renormalization group is a theoretical framework for investigating how the
properties of a physical system change with changing length scale. Coarse graining
to larger length scales introduces a mapping of the physical system onto itself but
with changed parameters. The fixed points of this mapping correspond to self-similar
systems. Critical points are examples of such fixed points, they are self-similar be-
cause the correlation length is infinite. The renormalization group (RG) technique
for critical phenomena was inspired by the scaling concept of Kadanoff [69] and sub-
sequently developed by Wilson [70] to be a powerful technique for the understanding
of the phase transition problems.

The basic idea of the RG can be illustrated by Kadanoff’s block-spin argu-
ment. As the critical point of a system is approached, its correlation length increases

dramatically. Kadanoff argued that since spins are correlated over scales up to the
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correlation length &, it is plausible to regard spins within regions up to size £ to be-
have as a single block spin. Thus, one should be able to describe the physics close to
the transition in terms of these block-spin variables. In this spirit, Kadanoff’s real-
space renormalization group procedure can be summarized as follows: (a) Divide the
system into blocks of linear size b < & where each block contains b spins (b) Replace
each block of spins by a single spin using some coarse graining rule (c¢) Rescale all
lengths by b to restore the original lattice space. After each RG step, the system’s
partition function has to retain its original form but in terms of the new couplings
so that the transformed system has the same physical behavior as the original one.
This RG procedure decreases the number of degrees of freedom and generates a flow
in parameter space. Analyzing this flow gives access to the critical behavior.

1.3.1. Strong-Disorder Renormalization Group Technique. Conven-
tional RG methods only treat the evolution of a small number of parameters in the
Hamiltonian under coarse graining. Moreover, they are often implemented in mo-
mentum space. These methods are not particularly well suited to disordered systems
which are not translationally invariant and contain a large number of independent
parameters. In 1979, Ma, Dasgupta, and Hu [29, 30] developed an RG method for
disordered systems. Because it works the better the stronger the disorder is, this
method is now called the strong-disorder renormalization group (SDRG).

The basic idea of the SDRG method is to determine the largest local energy
(e.g., the strongest exchange coupling in a spin system) and the ground state of its
corresponding local Hamiltonian exactly. Then we perturbatively treat the interaction
of this degree of freedom with the remaining system. After neglecting the excited
states of our strongest coupling, a new effective Hamiltonian arises with a reduced
number of degrees of freedom. This step is iterated till we reach the desired low-energy

description of the system.
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D. Fisher [27, 28] successfully applied the SDRG technique to the one-dimensi-

onal random transverse-field Ising model (RTFIM)

H=- Z Jiojog, — Z hio?f (1.34)

where he exactly calculated the critical behavior. Here, the transverse field h; > 0
and the nearest-neighbor interaction J; > 0 at the lattice site ¢ are independent
random variables drawn from random distributions. {o{'} are quantum spin operators
represented by Pauli matrices.

At zero temperature, in the absence of a transverse field, all the spins will be
aligned in the z-direction leading to a magnetic moment p,. If we gradually apply
a transverse field at zero temperature, tunneling events between up and down will
occur due to Heisenberg uncertainty principle between o, and o,. These fluctuations
are known as quantum fluctuations which lead to an order-disorder quantum phase
transition (QPT) when the transverse field reaches a critical value h, [2, 3].

1.3.2. SDRG Recursions. We start the procedure by determining the max-
imum local energy in the system, 2 = max(.J;, h;). Suppose the maximum local energy
is the bond at site 2, 2 = J,. The two spins that interact via €2 like to be paral-
lel and flip coherently. The unperturbed Hamiltonian of this segment of the system
Hq = —Qoj0}, has two degenerate ground states | T913) and | |2)3) where each is
separated by the energy gap 2./, from two excited states | Tol3) and | JoT3). Then, the
interactions of the two adjacent spins with the transverse field, V' (h) = —hgeo§ — h3o3,
are treated in second-order degenerate perturbation theory which results in an effec-

tive Hamiltonian H.g = const. — hg? with a renormalized field

(1.35)

This renormalized field interacts with a single effective spin 635 composed of the rigidly

locked connected spins o9 and o3 as a spin cluster. Then, the excited states of Hq are
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Figure 1.6: A schematic representation of a single strong disorder renormalization
group step for the special case of {2 = J,. The height of the dotted line
represents the coupling’s (J and h) strengths.

neglected, and a new effective Hamiltonian is derived with the number of degrees of
freedom reduced by one. This procedure is explained schematically in Fig. 1.6. The

effective spin 6, has a renormalized magnetic moment given by

i = iy + s, (1.36)

On the other hand, suppose the strongest coupling in the system is a field,
say §2 = hs, therefore the local unperturbed Hamiltonian of this piece is given by

Hqg = —Qo3 with ground state | —) = \%\ T+ \/ii] 1) separated by energy gap 2hs

from its excited state | «) = L2| 1) — \/Lil 1). The coupling to the nearest neighbors
given by V(J) = —Jyo{05 — Joo505 is considered as a perturbation. Because the

spin at site 2 points in the x-direction, it does not contribute to the order parameter.
The SDRG suggests to decimate it, leading to a direct effective interaction J between

its nearest neighbors. This procedure is explained schematically in Fig. 1.7. The
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J=(J J)/h,

Figure 1.7: A schematic representation of a single strong disorder renormalization
group step for the special case of 2 = hy. The height of the dotted line
represents the couplings (J and h) strengths.

new effective coupling can be obtained from treating V' (J) in the second-order of
perturbation theory. The result is an effective Hamiltonian Heg = const. — Jo?ioZ,
and the effective coupling .J reads

J1J3
qQ

J = (1.37)
Since both J and & are always weaker than any of the original couplings, the SDRG
steps reduce the overall energy scale of the system. The quantum phase transition
can be reached by iterating SDRG steps until we lower the energy level to Q2 =T = 0.
In the paramagnetic phase, decimating sites dominates as {2 — 0. Therefore, no large
cluster of spins are formed whereas in the ferromagnetic phase, gathering of sites
dominates, and an infinite cluster is built at 2 = 0.

1.3.3. Flow Equations. Iterating the above SDRG steps results in a renor-
malization of the probability distributions of the couplings (h and J) and magnetic

moments p. For the random-transverse field Ising chain, closed form solutions of the
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fixed-point distributions can be found, and many physical quantities can be derived
from them.

The random transverse-field Ising chain is topologically preserved and the cou-
plings J and & are independent at each stage of SDRG but the probability distribu-
tions of the transverse fields, P(h), and interactions, R(J), evolve during the SDRG
process. To describe how P(h) and R(J) behave as the energy scale is reduced,
Fisher [28] wrote RG flow equations of these distributions. Due to the multiplica-
tive form of the recursion relations, Fisher worked with logarithmic variables In .J
and In A, and the resulting flow equations showed that the distributions get broader
and broader with decreasing 2. Therefore, the perturbative decimation approxima-
tion in the SDRG steps gradually improves with iterating the SDRG steps. In the
case of an unbounded increase of the distribution’s width, which is the case in RT-
FIM at criticality, the SDRG technique becomes asymptotically exact, and the errors
made during the early stage of SDRG only affect nonuniversal coefficients but not
the critical behavior. This result can be simply explained: An infinite width of the
distributions means that one is very unlikely to find two neighboring couplings with
high energy, thus any ratio h;/J; either goes to zero or to infinity.

The flow equations were solved using logarithmic variables, I' = In(£;/Q),
¢ =1In(Q/J), and 8 = In(2/h) where ; is the strongest coupling initially found in
the system. At the critical point 7 = 0 where r ~ (In h) — (In J) measures the distance

from criticality, the probability distributions were found analytically as

1 1
p(¢) = ze T, R(B) = ze /T (1.38)

r r
where the diverging width I' gives the infinite-randomness critical point (IRCP) its
name. Note that the couplings and the transverse fields are dual variables (RTFIM
Hamiltonian is invariant under the transformations: ojo7 , — 77, 0f — 7777, and

)

h; <» J; where {7} are the dual Pauli operators). Thus, the quantum critical point
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is located at the self-duality point » = 0. In order to completely solve the critical
behavior, the magnetic moment p and the cluster length [ have to be included in the
SDRG calculations in the form of joint distributions R(8,l, : I') and P((, s, p; I).

In addition to this fixed point at » = 0, there are two lines of fixed points for
the ordered (r < 0) and the disordered (r > 0) Griffiths phases.

1.3.4. Summary of Key Quantities. The solution of the critical behavior
is characterized by three independent critical exponents, the correlation length expo-
nent v = 2, the tunneling exponent ¢ = 1/2, and the exponent characterizing the
moments of the clusters ¢ = (14 +/5)/2. The correlation length exponent v describes

how the correlation length diverges when approaching the critical point via
&~ rl™. (1.39)

On the other hand, the tunneling critical exponent ¢ controls relation between length

scale L and the energy scale €,
1
L~ [In(Q/Q)]%. (1.40)

It owes its name to cluster dynamics being due to tunneling between up and down
states. This activated scaling formally corresponds to dynamic critical exponent
z = oo and is an indication of the qualitative change in the critical behavior due
to the disorder. In other words, the flipping of spin clusters is exponentially slow
with broadly distributed time scales In7; ~ L¥ at the critical point. In addition, 1
describes how the density of surviving clusters ng behaves with reducing the energy

scale ). Its scaling form reads

ng = [In (Q /)Y X, [ In (0 /)] (1.41)
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where the scaling function at the critical point behaves as X,,(0) = constant and
thus ng ~ [In (2;/92)]7%¥. In the disordered quantum Griffiths phase, 7 > 0 and
Q) — 0, the density of surviving clusters is smaller because the strongest couplings
are most likely fields. Fisher found X, (y) ~ y¥Ye "t and thus ng ~ r®Q%?
where the nonuniversal dynamical exponent z ~ r~*¥ in the Griffiths phase. From
the duality transformation between fields and interactions, he found nq ~ [r|% Q%>
in the ordered quantum Griffiths phase.

The value of the exponent ¢ was found by solving the flow equation for the
probability distribution of the moments p. Fisher found that ¢ = (1 + v/5)/2, the
golden mean. The exponent ¢ characterizes the typical magnetic moment of a single

cluster pg (the number of active spins) at €2 as

fi = [In (Q /)X, [ In (Q4/9)]. (1.42)

At the critical point, pg ~ [In (Q;/Q)]? where the scaling function X, (0) = const. In
the disordered quantum Griffiths phase, pg ~ ¥4 =%) 1n (Q;/Q). We cannot use the
duality transformation to calculate the magnetic moment in the ordered quantum
Griffiths phase because it depends on the number of active spins in the surviving
clusters not on the number of clusters itself. In the disordered phase, most of the
surviving clusters are single spins, whereas they are effective spins in the ordered
phase. Thus, the typical magnetic moment is inversely proportional to the probability
density of surviving clusters yielding pq ~ 1/ng ~ |r|~%Q~%% The scaling behavior
of ng and pug can be used to derive thermodynamic quantities like the entropy as

S ~ ngIn2 and the magnetic susceptibility as x ~ noud /T.

1.4 KOSTERLITZ-THOULESS TRANSITION

All phase transitions we have considered so far were order-disorder transi-

tions that separate a phase without long-range order from a long-range ordered and



31

symmetry-broken phase. In this section, we discuss a kind of phase transition that
does not involve long-range order.

1.4.1. General Features of the XY Model. Classical lattice spin systems
can be characterized by two parameters: the dimensionality of the underlying lattice
d and the symmetry of the spin space (the number n of its components). Here, n = 1
for Ising models, n = 2 for XY models, and n = 3 for Heisenberg models. In this
section we will focus on the case d = 2 and n = 2, i.e., on the 2D XY model which is
particularly interesting. The XY spin at any lattice point can be described by a unit
vector in the XY-plane as S; = (cos(6;), sin(6;)). The Hamiltonian of this model can

be written as
Hoy == Y 0,808 = Y gyt~ (1.43)

where J;; is a ferromagnetic interaction between the spins, and (6; — ;) is the phase
difference between the spins at neighboring sites ¢ and j. Notice that the Hamiltonian
is invariant under any global rotation of all spins and thus has a O(2) symmetry
(equivalently, we can consider the spin components as real and imaginary part of a
complex variable giving U(1) symmetry). Unlike the Ising model, this system has
an infinite number of ground states because any uniform alignment, see Fig. 1.8, of
the spins is a ground state regardless of its direction in the XY-plane. In addition to
planar magnets, superfluids, and superconducting thin films are known as physical
realizations of the 2D XY model. These systems have a complex order parameter 1
which represents the boson or Cooper pair “condensate wavefunction”. So, the order
parameter can either be viewed as a two-dimensional vector (S) = S(cos(0), sin(0))
or a complex number (1) = |())|e? where @ is its respective phase or direction.

Let us now consider nonuniform spin configurations. Assuming the direction
of spins to be slowly varying across the lattice, see Fig. 1.9, we can expand the free

energy in powers of V6. Because the minimum free energy of the system occurs at
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—

any uniform 6, the free energy F is not expected to have a linear term of V(%)

Thus, to leading order in VO(Z), we obtain

1

Fu=3 / O (1.44)

where p, is known as the spin-wave stiffness or helicity modulus in magnetic systems
or the superfluid density in superfluids. This quantity is a measure of the change
in the energy due to the spatially varying order parameter, and it has the units of
[energy]/[length]42.

In order to obtain the free energy, we need to minimize the elastic free energy,

Eqn. 1.44 with respect to the order parameter (), this gives

0F,

0 —pV20(Z) = 0. (1.45)

There are two types of solutions for this equation: The first type is 0(z) = @ - Z +
b, and the second type of solutions consists of vortices centered by defect point,
see subsection (1.4.3) for more details. Assume we have a system with boundary
conditions f#(x = 0) = 0 and §(z = L) = . Solving (1.45) under the boundary

conditions gives 0(x) = Oyx/L and the elastic free energy thus reads F,; = % psO2LI72,

P86 JdI9 e e
$68 J99 oo
$6 ¢ Jidd >0

Figure 1.8: Different ground states for the XY-Hamiltonian represented by spin con-
figurations with a spatially uniform 6.
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For two-dimensional XY system, the elastic free energy becomes
Lo
Fog= 510390- (1.46)

1.4.2. Kosterlitz-Thouless Transition. We now discuss the phases and
transitions of the 2D XY model in detail. At sufficiently high temperatures, the
system is in a conventional paramagnetic phase. At zero temperature one might
expect a long-range ferromagnetic phase similar to the one in the 3D XY model.
However, in 1966 Mermin and Wagner [71] showed that two-dimensional systems
having an order parameter with continuous symmetry do not have any long-rage
ordered phase, i.e., the expectation value of the order parameter vanishes for all
non-zero temperatures. In 1973, Kosterlitz and Thouless [72] suggested that the low-
temperature phase of the 2D XY model is actually quasi-long range ordered which

implies that the order parameter correlation function behaves as
G(x) ~ |x| 1D, (1.47)

for large distances |Z]. The exponent n(7") is not universal. This vanishing of the
correlation function as x — oo implies that there is no true long-range order in
agreement with the Mermin-Wagner theorem. On the other hand, the decay of the

correlation function in the low-temperature phase is much slower than the exponential
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Figure 1.9: Spin configurations with a spatially non-uniform 6.
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decay
G(x) ~ e & (1.48)

in the high-temperature phase.

Although the 2D XY system has no true long-range order, the decay of the
correlation function changes its behavior from power-law at low temperatures to ex-
ponential decay at higher temperatures. Therefore, there is a phase transition that
happens when the correlation function changes its behavior. This transition is known
as the Kosterlitz-Thouless (KT) phase transition and its transition temperature is
known as Tykr.

1.4.3. Vortices. A critical role in the Kosterlitz-Thouless transition is played
by the vortices which are singular solutions of Eqn. (1.45). A vortex can be thought of
as a topological defect with vanishing order parameter in the center and a singularity
in the phase 0(Z) (VO(z) = 1/|Z| is finite everywhere except at the center). The
vorticity of the vortex m can be found by a line integral along a counter-clockwise

contour surrounding the vortex center,
%VG -dl = 2mn (1.49)

where n is an integer number and also called the winding number. If n > 1, the
topological defect is called a vortex while if n < —1, it is an excitation known as an
antivortex, see Fig. 1.10.

The elastic cost to create a vortex of vorticity n in a system of size L can be

found by substituting VO(z) = n/|Z| in equation (1.44) to obtain

L
Evortex ~ 7TTL2,05 In — (150)
a
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where a is the lattice constant. We notice that the energy of a vortex is quadratic
in the winding number n and therefore it is energetically preferable to create vor-
tices with |n| = 1. Furthermore, the energy of the vortex increases logarithmically
with system size L which implies that the creation of a single vortex at low temper-
ature is very unlikely. However, free vortices gain more importance as temperature
increases. The Kosterlitz-Thouless transition happens when free vortices become
thermodynamically favorable. To estimate Txk7, Kosterlitz and Thouless considered
an energy-entropy argument by pointing out that the energy and the entropy depend
on the system size in the same manner. Since there are (L/a)? available positions
for the vortices, the entropy can be found as S = 2kpIn(L/a). Thus, the free energy

cost to introduce a single vortex with n = 41 is
9 L
Foortex ~ [7‘-” Ps — 2kBT] In —. (151)
a

Therefore, in the thermodynamic limit L — oo, free vortices can not be created
spontaneously for temperatures T° < wps/(2kp) since in this limit Fpper — 00.

However, at T" > 7ps/(2kp) the system decreases its free energy by creating free
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Figure 1.10: (left) Spin vortex with vorticity greater than 0. (right) Spin antivortex
with vorticity smaller than 0.
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vortices because F e — —00 as L — oo. This temperature at which the Helmholtz
free energy changes its sign is equal to the transition point Tkr.

On the other hand, the free energy change due to forming a vortex-antivortex
pair can be found to be

Epair ~ 27 1n§ (1.52)

where d > a is the distance between the vortex centers. This energy remains finite
in the thermodynamic limit. Therefore, for low temperatures thermal excitations are
generated in the form of bound vortex-antivortex pairs interacting via a logarithmic
potential. At the Kosterlitz-Thouless transition, these pairs break down and free vor-

tices proliferate by a mechanism known as vortex-antivortex unbinding, see Fig. 1.11.

1.4.4. Properties of the Kosterlitz-Thouless Transition. Here, we dis-
cuss some properties of the KT transition in a 2D clean XY model. The effect of the
thermally activated vortex pairs is described by the temperature dependent spin wave
stiffness p;. One of the main features of the KT transition in an isotropic XY model
is the universal jump in the spin-wave stiffness at Txr where the spin-wave stiff-

ness jumps discontinuously to zero. The spin wave stiffness describes how much free

vortex

unbinding

Figure 1.11: Vortex unbinding drives the Kosterlitz-Thouless phase transition at Txr.
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energy it costs to apply a twist to the boundary conditions to the spins. From equa-
tion (1.51), we see that this spin-wave stiffness has a universal value ps = 2kpTyr/m
at the transition point. Thus, macroscopic twists of the spin direction cost energy
only if T" < Tikr.

In the high temperature phase but close to the transition, the correlation

length diverges rapidly as [72]
E(T) = AePIT-Twrl 2, (1.53)

Here, A and B are non-universal constants. In addition, the order parameter suscep-

tibility can be analogously found as [72]
X(T) o €277 o ePIT-Txrl ™12 (1.54)

Here, 7 is the correlation function critical exponent and D = (2—n)B. The correlation
function critical exponent has the same universal value as in the two-dimensional Ising
model [73], n = 1/4. However, the conventional critical exponents v and ~ can not
be defined since £ and x diverge faster than any power of T' — T...

If we consider an anisotropic 2D XY model, the behavior of the spin wave
stiffnesses in the z-direction is different from that in the y-direction. Thus, we need
another parameter to study the universality of the KT transitions in anisotropic 2D
XY models. It turns out that even though the individual stiffnesses are not universal,
their product is universal. Moreover, because the 2D XY model is equivalent to the
quantum-to-classical mapping of a one-dimensional bosonic system [74], the Luttinger
parameter g = 7,/p,k turned out to be a suited choice to study the anisotropic 2D XY
model. Here, k is the compressibility. In particular, under this quantum-to-classical
mapping, the compressibility £ maps onto the spin-wave stiffness p, in the time-like

direction of the classical XY model. Thus, the Luttinger parameter in a classical



anisotropic 2D XY model reads

9= (7/T)\/pspr.

It is found to have a universal value of 2 at Tx.

38

(1.55)
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I. INFINITE-RANDOMNESS CRITICALITY IN A RANDOMLY
LAYERED HEISENBERG MAGNET

Fawaz Hrahsheh, Hatem Barghathi, and Thomas Vojta
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ABSTRACT*

We study the ferromagnetic phase transition in a randomly layered Heisenberg
magnet using large-scale Monte-Carlo simulations. Our results provide numerical evi-
dence for the infinite-randomness scenario recently predicted within a strong-disorder
renormalization group approach. Specifically, we investigate the finite-size scaling
behavior of the magnetic susceptibility which is characterized by a non-universal
power-law divergence in the Griffiths phase. We also study the perpendicular and
parallel spin-wave stiffnesses in the Griffiths phase. In agreement with the theoretical
predictions, the parallel stiffness is nonzero for all temperatures 7" < T.. In contrast,
the perpendicular stiffness remains zero in part of the ordered phase, giving rise to

anomalous elasticity. In addition, we calculate the in-plane correlation length which

*Published in Physical Review B 84 184202 (2011).



40

diverges already inside the disordered phase at a temperature significantly higher than
T,.. The time autocorrelation function within model A dynamics displays an ultraslow

logarithmic decay at criticality and a nonuniversal power-law in the Griffiths phase.
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1. INTRODUCTION

When weak quenched disorder is added to a system undergoing a classical
continuous phase transition, generically the critical behavior will either remain un-
changed or it will be replaced by another critical point with different exponent values.
Which scenario is realized depends on whether or not the clean critical point ful-
fills the Harris criterion.[18] In contrast, zero-temperature quantum phase transitions
generically display much stronger disorder phenomena including power-law quantum
Griffiths singularities, [75, 76, 77] infinite-randomness critical points featuring expo-
nential instead of power-law scaling, [27, 28] and smeared phase transitions.[48, 49|
A recent review of these phenomena can be found in Ref. [21], while Ref. [20] focuses
on metalic systems and also discusses experiments.

The reason for the disorder effects being stronger at quantum phase transitions
than at classical transitions is that quenched disorder is perfectly correlated in the
imaginary time direction. Imaginary time behaves as an additional dimension at
a quantum phase transition and becomes infinitely extended at zero temperature.
Therefore, the impurities and defects are effectively “infinitely large” in this extra
dimension, which makes them much harder to average out than the usual finite-size
defec<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>