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ONE-DIMENSIONAL INVERSE LIMITS WITH
SET-VALUED FUNCTIONS

W. T. INGRAM

Abstract. In this paper we show that an inverse limit is 1-dimen-
sional whenever the bonding functions are upper semi-continuous
from [0, 1] into C([0, 1]) and dim(G(fi ◦ fi+1 ◦ · · · ◦ fj)) = 1 for all
integers i and j, 1 ≤ i ≤ j. We apply this result to show that such
an inverse limit is treelike and also to show that unions of certain
finite collections of interval-valued upper semi-continuous functions
on [0, 1] produce treelike continua. The former extends treelikeness
of inverse limits with set-valued functions to a larger class of bond-
ing functions, while the latter generalizes known results for unions
of two mappings.

1. Introduction

Inverse limits with mappings on [0, 1] produce continua having dimen-
sion not greater than 1. On the other hand, inverse limits on [0, 1] with
a single set-valued function can produce infinite dimensional continua
as well as continua of any finite dimension. For example, using the
function f : [0, 1] → C([0, 1]) given by f(0) = [0, 1] and f(t) = 0 for
t > 0 as a single bonding function produces an infinite dimensional con-
tinuum [4, Example 2.3]; the function given by f(t) = 0 for 0 ≤ t < 1/2,
f(1/2) = [0, 1/2], f(t) = 1/2 for 1/2 < t < 1, and f(1) = [1/2, 1] pro-
duces a two-dimensional continuum [4, Example 5.3]. In 2011, Van Nall
published theorems addressing the dimension of inverse limits with set-
valued functions on finite dimensional compact metric spaces [11]. For
functions on [0, 1], Nall’s results show that (1) an inverse limit with a
sequence of upper semi-continuous functions each having 0-dimensional
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values has dimension 0 or 1 and (2) an inverse limit with a sequence of
upper semi-continuous functions each having 0-dimensional point-inverses
has dimension 0 or 1. While investigating treelikeness of inverse limits on
[0, 1], we considered interval-valued upper semi-continuous functions on
[0, 1] that may have flat spots on their graphs [6]. Roughly speaking, we
showed that for a sequence of upper semi-continuous interval-valued func-
tions on [0, 1], if no flat spot iterates under compositions into the closure
of the set of points where a bonding function has nondegenerate values,
then the dimension of the inverse limit is 0 or 1. In [6, Example 5.3], we
gave an example of a function having nondegenerate interval values and
infinitely many flat spots that produces a 1-dimensional continuum. We
have constructed an unpublished example of a function on [0, 1] to which
Nall’s point-inverse theorem applies, but [6, Theorem 4.2] does not (the
graph of the function simply contains vertical lines attached to the graph
of the identity at points corresponding to the dyadic rationals similar to
the graph in Example 6.1 of section 6). This unsatisfying dichotomy of
results about dimension led us to re-examine these issues. In Theorem
4.3 of this paper, we prove that the dimension of the inverse limit is 0 or 1
for any inverse limit with a sequence of upper semi-continuous functions
from [0, 1] into C([0, 1]) such that dim(G(fi j)) = 1 for all integers i and
j, 1 ≤ i ≤ j. We apply this result to improve an earlier theorem on
treelikeness of inverse limits of functions that are certain unions of two
mappings on [0, 1] (see Theorem 5.6) as well as to show that sequences of
interval-valued functions on [0, 1] have treelike inverse limits if the dimen-
sion of the graphs of the compositions fi j does not exceed 1 (see Theorem
5.2).

2. Definitions and Background

By a compactum we mean a compact metric space. If X is a com-
pactum, we denote the collection of closed subsets of X by 2X ; C(X)
denotes the connected elements of 2X . If each of X and Y is a com-
pactum, a function f : X → 2Y , sometimes denoted f : X ↗ Y , is said
to be upper semi-continuous at the point x of X provided that if V is an
open subset of Y that contains f(x), then there is an open subset U of
X containing x such that if t is a point of U , then f(t) ⊆ V . A function
f : X → 2Y is called upper semi-continuous provided it is upper semi-
continuous at each point of X. If f : X → 2Y is a set-valued function,
by the graph of f , denoted G(f), we mean {(x, y) ∈ X × Y | y ∈ f(x)}.
It is known that if X and Y are compacta and M is a subset of X × Y
such that X is the projection of M to its set of first coordinates, then
M is closed if and only if M is the graph of an upper semi-continuous
function [8, Theorem 2.1]. In the case that f is upper semi-continuous
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and single-valued, i.e., f(t) is degenerate for each t ∈ X, f is a contin-
uous function. We call a continuous function a mapping. If X and Y
are compacta and f : X → 2Y is a set-valued function, we say that f is
lower semi-continuous at x ∈ X provided it is true that if x1, x2, x3, . . .
is a sequence of points of X converging to the point x and y is a point of
f(x), then there is a sequence y1, y2, y3, . . . of points of Y that converges
to y ∈ Y such that yi ∈ f(xi) for each i ∈ N. A point of continuity
of a set-valued function is a point at which the function is both upper
and lower semi-continuous. Thus, for an upper semi-continuous function,
a point at which it is not continuous is a point at which it is not lower
semi-continuous. A subset A of a topological space X is nowhere dense
in X provided the closure of A does not contain an open set. A subset A
of a topological space X is of the first category provided A is the union
of countably many nowhere dense sets. The following theorem may be
found in [10, p. 71, Corollary 1].

Theorem 2.1. If X and Y are compacta and f : X → 2Y is upper semi-
continuous, then {x ∈ X | f is not lower semi-continuous at x} is of the
first category.

We denote by N the set of positive integers. If s = s1, s2, s3, . . . is a
sequence, we normally denote the sequence in boldface type and its terms
in italics. Suppose X is a sequence of compacta each having diameter
bounded by 1 and fn : Xn+1 ↗ Xn is an upper semi-continuous function
for each n ∈ N. By the inverse limit of f , denoted lim←−f , we mean
{x ∈

∏
i>0 Xi | xi ∈ fi(xi+1) for each positive integer i}; we call the

pair {X,f} an inverse sequence. For an inverse sequence {X,f} the
following notation is convenient: If i and j are positive integers with
i < j, fi j = fi ◦ fi+1 · · · fj−1; thus, fi j : Xj ↗ Xi. It is convenient
to denote by fi i the identity on Xi. Inverse limits are nonempty and
compact [8, Theorem 3.2]; they are metric spaces being subsets of the
metric space

∏
i>0 Xi. We use the metric d on this product given by

d(x,y) =
∑

i>0 di(xi, yi)/2
i. Because every metric space has an equivalent

metric that is bounded by 1, we assume throughout that the metrics on
our spaces are bounded by 1. In the case that each fn is a mapping, the
definition of the inverse limit reduces to the usual definition of an inverse
limit on compacta with mappings (it is for this reason that we use the
term inverse limit in discussing the corresponding construction using set-
valued bonding functions). If A ⊆ N, we denote by pA the projection of∏

n>0 Xn onto
∏

n∈A Xn given pA(x) = y provided yi = xi for each i ∈ A.
If A = {n}, pA is normally denoted pn. In the case that A ⊆ B ⊆ N, we
normally also denote the restriction of pA to

∏
n∈B Xn by pA, inferring

by context that we are using this restriction. We denote the projection
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from the inverse limit into the ith factor space by πi and, more generally,
for A ⊆ N, we denote by πA the restriction of pA to the inverse limit.

A set traditionally used in the proof that lim←−f is nonempty and com-
pact is {x ∈

∏
k>0 Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. Because this set

was originally denoted Gn, we adopt and use throughout this article the
notation G′

n = {x ∈
∏n+1

k=1 Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. Note that
for A = {1, 2, . . . , n+1}, G′

n = pA(Gn). In a recent paper [7], we observed
that inverse limits on compacta with upper semi-continuous bonding func-
tions is homeomorphic to an inverse limit on the sequence G′

1, G
′
2, G

′
3, . . .

with bonding functions that are mappings. One consequence of this is
that, in order to show that an inverse limit with set-valued functions has
dimension 1, it is sufficient to show that G′

n is 1-dimensional for each
positive integer n.

3. Properties of Upper Semi-Continuous Functions

The following theorem is not difficult to prove. A proof may be found
in [7, Theorem 2.3].

Theorem 3.1. Suppose each of f and g is an upper semi-continuous
function from [0, 1] into C([0, 1]). Then g ◦f is an upper semi-continuous
function from [0, 1] into C([0, 1]).

Theorem 3.2. Suppose f : [0, 1] → C([0, 1]) is upper semi-continuous
and dim((G(f))) = 1. If x is a point of [0, 1] and f(x) is nondegenerate,
then f is not lower semi-continuous at x.

Proof. Suppose x is a point of [0, 1] and f(x) is the nondegenerate interval
[a, b]. Let p denote the midpoint of [a, b]. Because dim((G(f))) = 1, G(f)
does not contain an open set. Thus, if O is an open set containing (x, p),
there is a point (t, z) that belongs to O and not to G(f). Choose a
sequence U of open sets closing down on (x, p) so that no term of U
contains a point having second coordinate 0 or 1; for each i, Ui contains
a point (ti, zi) not in G(f). The sequence t1, t2, t3, . . . converges to x.
Because zi separates [0, 1] and f(ti) is connected for each i, f(ti) ⊆ [0, zi)
or f(ti) ⊆ (zi, 1]. Assume for infinitely many i, f(ti) ⊆ (zi, 1]. There
exists a subsequence s of t and a point c, a < c < b, such that f(si) ⊆ (c, 1]
for each i. Because s is a subsequence of t, s converges to x. However,
if yi ∈ f(si) for each i, y1, y2, y3, . . . does not converge to a; i.e., f is not
lower semi-continuous at x. �

Recalling from Theorem 2.1 that the set of points at which an upper
semi-continuous function is not continuous is a set of the first category,
we have the following corollary to Theorem 3.2.
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Corollary 3.3. If f : [0, 1] → C([0, 1]) is upper semi-continuous and
dim(G(f)) = 1, then {x ∈ [0, 1] | f(x) is nondegenerate} is of the first
category.

Corollary 3.4. If f : [0, 1] → C([0, 1]) is upper semi-continuous and
dim(G(f)) = 1 and J is a nondegenerate subinterval of [0, 1], then there
is an uncountable dense subset of J on which f is single-valued.

Suppose f : [0, 1]↗ [0, 1] is an upper semi-continuous set-valued func-
tion. We say that y is a flat spot for f provided f−1(y) contains a nonde-
generate interval. Subintervals J1 and J2 of [0, 1] are said to be nonover-
lapping provided if p ∈ J1 ∩ J2, then p is an endpoint of both J1 and J2.
Because of its separability, the interval [0, 1] can contain at most count-
ably many nonoverlapping intervals. In the next two theorems we make
use of the following result. A necessary and sufficient condition that a
subset C of [0, 1]2 be 2-dimensional is that C contain a non-empty open
set [3, p. 44, Theorem IV 3, ].

Theorem 3.5. If f : [0, 1] → C([0, 1]) is upper semi-continuous and
dim(G(f)) = 1, then {y ∈ [0, 1] | y is a flat spot for f} is at most count-
able.

Proof. Suppose y1 and y2 are two points of [0, 1] with y1 < y2 and Ji
is a nondegenerate interval lying in f−1(yi) for i = 1, 2. If J1 ∩ J2 is
nondegenerate, J1 ∩ J2 is an interval. Because f is interval-valued, G(f)
contains the two-cell (J1 ∩ J2) × [y1, y2], a contradiction. It follows that
f cannot have uncountably many flat spots. �
3.1. Compositions and dimension.

In sections 4 and 5 it is critical to our proofs concerning dimension
and treelikeness of inverse limits that the dimension of compositions of the
bonding functions be not greater than 1. In our next theorem we see that,
for interval-valued functions on [0, 1], one way that we can lose control of
dimension is to have a nondegenerate value for the second function in a
composition at a flat spot for the first.

Theorem 3.6. Suppose each of f and g is an upper semi-continuous
function from [0, 1] into C([0, 1] such that dim(G(g ◦ f)) = 1. If t ∈ [0, 1]
and f−1(t) contains an interval, then g(t) is a singleton.

Proof. Suppose a < b and [a, b] ⊆ f−1(t), but g(t) is not a singleton.
Then there exist points c and d of [0, 1] with c < d such that g(t) = [c, d].
Thus, G(g ◦ f) contains the 2-cell [a, b]× [c, d], a contradiction. �

In general, the dimension of the graphs of compositions of a sequence of
interval-valued functions on [0, 1] can exceed the dimension of the graphs
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of any of the factors if some flat spot for a term of the sequence of bonding
functions iterates to a point where an earlier term of the sequence has a
nondegenerate value as in [6, Example 5.6]. It would be interesting to
know if this is the only way a graph of such a composition can have
dimension greater than 1.

4. Dimension of Inverse Limits

In this section we obtain a sufficient condition that a nondegenerate
inverse limit with upper semi-continuous interval-valued bonding func-
tions is 1-dimensional. We begin with the following observation from [7,
Corollary 4.2].

Theorem 4.1. Suppose X is a sequence of compacta and fi : Xi+1 → 2Xi

for each positive integer i. Then lim←−f is homeomorphic to an inverse
limit on the sequence X1, G

′
1, G

′
2, G

′
3, . . . with bonding functions that are

mappings.

Theorem 4.1 often allows us to reduce questions about an inverse limit
with set-valued functions to questions about the nature of the spaces
G′

n. Properties that are preserved under inverse limits with mappings
such as chainability, treelikeness, and dimension are among those that
can be detected in an inverse limit with set-valued functions by studying
these subsets of finite products. We have been particularly interested in
determining chainability and treelikeness in such inverse limits. As can
be seen in section 5, a key ingredient in such investigations is dimension.
Our next theorem deals with the dimension of the spaces G′

n in inverse
limits on intervals using interval-valued bonding functions.

Theorem 4.2. Suppose n is a positive integer and fi : [0, 1] → C([0, 1])
is upper semi-continuous for each positive integer i, 1 ≤ i ≤ n. Suppose
further that if i and j are integers such that 1 ≤ i ≤ j ≤ n + 1, then
dim(G(fi j)) = 1. Then dim(G′

n) ≤ 1.

Proof. Suppose H is a nondegenerate subcontinuum of G′
n. It follows

from Theorem 3.1 that if i and j are integers, 1 ≤ i ≤ j ≤ n + 1, then
fi j is an upper semi-continuous function from [0, 1] into C([0, 1]); by
hypothesis, dim(G(fi j)) = 1. There is a positive integer k, 1 ≤ k ≤ n+1,
such that pk(H) is a nondegenerate interval [a, b]. By Theorem 3.5, if j
is an integer, k ≤ j ≤ n + 1, then {x ∈ [0, 1] | f−1

k j (x) is of dimension
1} is at most countable. If i is an integer, 1 ≤ i ≤ k, it follows by
Corollary 3.3 that {x ∈ [0, 1] | fi k(x) is nondegenerate} is of the first
category. Consequently, there is a point z, a < z < b, such that fi k(z) is
a singleton for each integer i, 1 ≤ i ≤ k, and f−1

k j (z) is 0-dimensional for
each integer j, k ≤ j ≤ n+ 1. Thus, {x ∈ H | xk = z} is 0-dimensional
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and separates H; so we have that dim(H) = 1. Because G′
n does not

contain a 2-dimensional subcontinuum, dim(G′
n) ≤ 1 [3, p. 94, Theorem

VI 8]. �
Theorems 4.1 and 4.2 yield the theorem we sought in this section.

Theorem 4.3. Suppose fi : [0, 1] → C([0, 1]) is upper semi-continuous
for each positive integer i. Suppose further that if i and j are integers
such that 1 ≤ i ≤ j, then dim(G(fi j)) = 1. Then dim(lim←−f) ≤ 1.

5. Treelikeness

In [5, Theorem 3.4] we showed that, under certain conditions, an upper
semi-continuous function on [0, 1] that is the union of two mappings pro-
duces a treelike continuum. In Theorem 5.6 we extend that theorem to
upper semi-continuous functions that are the union of certain finite col-
lections of interval-valued upper semi-continuous functions on [0, 1]. This
theorem requires that the dimension of the graphs of finite compositions
of elements of the collection be 1. Finite compositions of functions, each
having graphs that are the union of two mappings, have 1-dimensional
graphs, so Theorem 5.6 generalizes our earlier result from [5].

Włodzimierz J. Charatonik and Robert P. Roe have proved a theorem
[2, Theorem 2] that we make use of in this section; we state it below for the
convenience of the reader. Essential to our application of this theorem to
inverse limits on [0, 1] here is the fact that, among continua of dimension
1, treelikeness is characterized by the property of having trivial shape.

Theorem 5.1 (Charatonik and Roe). Suppose X is a sequence of finite
dimensional continua with trivial shape and fi : Xi+1 → C(Xi) is upper
semi-continuous for each positive integer i. If fn(x) has trivial shape for
each positive integer n and each x ∈ Xn+1, then lim←−f has trivial shape.

Our next theorem extends the class of set-valued functions on [0, 1]
known to produce treelike continua in an inverse limit. In section 6 we
give an example that we show to be treelike by making use of this theorem.
None of the previously known treelikeness theorems apply to Example 6.1.

Theorem 5.2. Suppose fi : [0, 1] → C([0, 1]) is upper semi-continuous
for each positive integer i. Suppose further that if i and j are integers
such that 1 ≤ i ≤ j, then dim(G(fi j)) = 1. Then lim←−f is treelike.

Proof. Let M = lim←−f . By Theorem 5.1, M has trivial shape. If M is
nondegenerate, by Theorem 4.3 its dimension is 1. Thus, M is treelike.

�
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5.1. Clumps and treelikeness.

We now move to extend [5, Theorem 3.4]. As was the case in that
article, our proof relies on the following theorem of H. Cook [1, Theo-
rem 12]; in Cook’s theorem, once again dimension 1 is a vital ingredient.
Before stating Cook’s result, for the convenience of the reader, we define
some terms from his paper. A collection G of continua is called a clump
provided the union of all the elements of G, denoted G∗, is a continuum
and there is a continuum C such that C is a proper subcontinuum of each
element of G and C is the intersection of each two elements of G. We
call a clump usc (Cook uses the term upper semi-continuous) provided
that if p1, p2, p3, . . . and q1, q2, q3, . . . are two sequences of points of G∗
converging to points p and q, respectively, of G∗−C and such that pi and
qi belong to the same element of G for each i ∈ N, then p and q belong to
the same element of G.

Theorem 5.3 (Cook). If G is a clump of treelike continua such that G is
usc and dim(G∗)=1, then G∗ is treelike.

If f, g : [0, 1] ↗ [0, 1] are upper semi-continuous set-valued functions,
we call a point x ∈ [0, 1] a coincidence point for f and g provided f(x) ∩
g(x) ̸= ∅.

Theorem 5.4. Suppose F is a collection of upper semi-continuous func-
tions on [0, 1] such that the union of the graphs of the elements of F is
the graph of an upper semi-continuous function F and if g is a sequence
of elements of F , then lim←− g is a continuum. If there is a point x ∈ [0, 1]

such that (1) if f ∈ F , then f(x) = x and f−1(x) = {x} and (2) if f and
g are two elements of F , then x is the only coincidence point for f and
g, then G = {lim←−f | fi ∈ F for each positive integer i} is a clump.

Proof. Note that G∗, the union of the elements of G, is lim←−F so G∗ is
closed. Each element of G is a continuum containing the point (x, x, x, . . . ),
so G∗ is a continuum.

Observe that if p ∈ lim←−F and i is a positive integer such that pi = x,
then p = (x, x, x, . . . ); this follows from the condition that f(x) = x and
f−1(x) = {x} for each f ∈ F . Let C = {(x, x, x, . . . )} and suppose H =
lim←−f and K = lim←− g are elements of G and y ∈ H ∩K. If H ̸= K, then
there is an integer i such that fi ̸= gi. However, yi ∈ fi(yi+1) ∩ gi(yi+1),
so yi = x, and thus y = (x, x, x, . . . ). Therefore, for each two elements H
and K of G, H ∩K = C. Thus, G∗ is a clump. �

Requiring that F be finite in Theorem 5.4 allows us to prove that the
resulting clump is a usc clump.
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Theorem 5.5. Suppose F is a finite collection of upper semi-continuous
functions on [0, 1] such that the union of the graphs of the elements of F is
the graph of an upper semi-continuous function F , and if g is a sequence
of elements of F , then lim←− g is a continuum. If there is a point x ∈ [0, 1]

such that (1) if f ∈ F , then f(x) = x and f−1(x) = {x} and (2) if f and
g are two elements of F , then x is the only coincidence point for f and
g, then G = {lim←−f | fi ∈ F for each positive integer i} is a usc clump.

Proof. Suppose p1,p2,p3, . . . and q1, q2, q3, . . . are sequences of points
of G∗ converging to p and q, respectively, such that pi and qi belong to
the same element of G for each i ∈ N but p ̸= (x, x, x, . . . ) ̸= q. For each
i ∈ N, suppose gi is a sequence of elements of F such that pi and qi
belong to lim←− gi. Assume a and b are sequences of elements of F such
that p ∈ lim←−a and q ∈ lim←− b, but q /∈ lim←−a. There is a positive integer j

such that πj(q) /∈ aj(πj+1(q)). For this integer j, consider the sequence
g1j , g

2
j , g

3
j , . . . . Because F is finite, there is an element h of F such that

gij = h for infinitely many integers i. Because πj(pi) ∈ gij(πj+1(pi)) and
πj(qi) ∈ gij(πj+1(qi)) for each i ∈ N, it follows that πj(p) ∈ h(πj+1(p))
and πj(q) ∈ h(πj+1(q)). Because πj(q) /∈ aj(πj+1(q)), h ̸= aj . However,
πj(p) ∈ aj(πj+1(p)) and πj(p) ∈ h(πj+1(p)); thus, πj+1(p) = x. There-
fore, p = (x, x, x, . . . ), a contradiction. Consequently, p and q belong to
the same element of G, so G is a usc clump. �

If we now add that the elements of a finite collection F are interval-
valued with 1-dimensional graphs and all finite compositions of elements of
F have 1-dimensional graphs, we obtain the theorem we seek generalizing
[5, Theorem 3.4].

Theorem 5.6. Suppose F is a finite collection of upper semi-continuous
interval-valued functions on [0, 1] with 1-dimensional graphs such that the
union of the graphs of the elements of F is the graph of an upper semi-
continuous function F . Suppose further that if f1, f2, . . . , fn is a finite
sequence of elements of F and i and j are integers such that 1 ≤ i ≤
j ≤ n + 1, then dim(G(fi j)) = 1. If there is a point x ∈ [0, 1] such that
(1) if f ∈ F , then f(x) = x and f−1(x) = {x} and (2) if f and g are
two elements of F , then x is the only coincidence point for f and g, then
lim←−F is a treelike continuum.

Proof. Let M = lim←−F and G = {lim←−f | fi ∈ F for each positive integer
i}. Observe that M = G∗. We may assume that M is nondegenerate.
Because each element of G is an inverse limit with interval-valued func-
tions, G is a collection of continua. By Theorem 5.5, G is a usc clump. By
Theorem 5.2, each element of G is treelike. Thus, if M is 1-dimensional,
then M is treelike.
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To see that M is 1-dimensional we show that G′
n is 1-dimensional for

each positive integer n and apply Theorem 4.1. Note that if n ∈ N,
then G′

n = C∗ where C = {G′(f1, f2, . . . , fn) | fi ∈ F for each i, 1 ≤
i ≤ n}. Each element of C is a continuum and each element of C is 1-
dimensional by Theorem 4.2. Because F is finite, C is finite, and thus C∗
is 1-dimensional. �

Examples 4.2 and 4.3 in [5] show that, even in the case that F consists
of two mappings, in order to prove treelikeness in Theorem 5.6, some
conditions are needed such as our hypothesis requiring the existence of
the point x ∈ [0, 1] satisfying the two conditions (1) if f ∈ F , then
f(x) = x and f−1(x) = {x} and (2) if f and g are two elements of F ,
then x is the only coincidence point for f and g.

6. Example

There are several known examples of interval-valued functions on [0, 1]
having both flat spots and nondegenerate values that nonetheless pro-
duce treelike continua. These include [4, Example 2.4, Example 2.6, and
Example 2.23] although each of these has only finitely many flat spots
and finitely many nondegenerate values. Example 5.3 in [6] showed that
a treelike continuum can be produced in an inverse limit with a single
bonding function with infinitely many flat spots. In this section we give
an example of an interval-valued bonding function that has both flat spots
and infinitely many nondegenerate values while still producing a treelike
inverse limit. Because the closure of the set of nondegenerate values is
the entire interval, none of the previously known results (including [6,
Theorem 4.2]) apply.

Example 6.1. Let D = {1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, . . . }, i.e., D is
the set of dyadic rationals in [0, 1]. Let f : [0, 1] → C([0, 1] be given
by f(t) = [0, 1/2q−1] where t = p/2q with p odd and less than 2q and
f(t) = 0 otherwise (see Figure 1 for the graph of f). Then lim←−f is a
treelike continuum.

Proof. Suppose n ∈ N; we show that dim(G(fn)) = 1. To see this, sup-
pose x is a point of [0, 1] that is not a dyadic rational. Then f(x) = 0.
Because f(0) = 0, {(x, 0)} is the only point of G(fn) having first coordi-
nate x. It follows that G(fn) does not contain a 2-cell and, consequently,
is 1-dimensional. By Theorem 5.2, lim←−f is treelike. �
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Figure 1. A depiction of the graph of the bonding func-
tion in Example 6.1.
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