CORRIGENDUM

1. Error in both books

There is an error in the books [1] and [2]. Two statements [1, Theorem 126, p. 90] and [2, Theorem 2.8, p. 18] are incorrect. In private correspondence with the author Mark Marsh provided the following example that illustrates the error.

Example 1.1. (Marsh) Let $f_1 : [0,1] \to 2^{[0,1]}$ be given by $f_1(t) = 1/2$ for $0 \le t < 3/4$ and $f_1(t) = \{1/2, 4t - 3\}$ for $3/4 \le t \le 1$. Note that $f_1^{-1} : [0,1] \to C([0,1])$. Let $f_2 : [0,1] \to C([0,1])$ be given by $f_2(t) = 1/2t + 1/4$ for $t \ne 1/2$ and $f_2(1/2) = [0,1]$. For n > 2, let f_n be the identity on [0,1]. Then (1,0) is an isolated point for $f_1 \circ f_2$ and, thus, $\lim f$ is not connected.

FIGURE 1. The graphs of the bonding functions f_1 (left) and f_2 (right) in Example 1.1

FIGURE 2. The graph of $f_1 \circ f_2$ in Example 1.1

A corrected statement of Theorem 126 of [1] follows.

Theorem 126. Suppose $\{X_i, f_i\}$ is an inverse limit sequence on Hausdorff continua with upper semi-continuous bonding functions such that f_i is Hausdorff continuum-valued

for each $i \in \mathbb{N}$ (or $f_i(X_{i+1})$ is connected with $f_i^{-1} : f_i(X_i) \to X_{i+1}$ Hausdorff continuumvalued for each $i \in \mathbb{N}$) then $\lim \mathbf{f}$ is a Hausdorff continuum.

A corrected statement of Theorem 2.8 from [2] is the following.

Theorem 2.8. Suppose X is a sequence of subintervals of [0,1] and f is a sequence of upper semi-continuous functions such that $f_i : X_{i+1} \to 2^{X_i}$ for each positive integer i. Suppose further that f_i has connected values for each $i \in \mathbb{N}$ (or for each $i \in \mathbb{N}$, $f_i(X_{i+1})$ is connected and $f_i^{-1}(x)$ is an interval for each $x \in f_i(X_{i+1})$). Then, $\varprojlim f$ is a continuum.

2. Error in [2]

Scott Varagona has observed that a hypothesis of surjectivity is missing from Theorem 2.1, page 14, in [2]. It is true in that statement that if G_n is connected for each n the $\varprojlim f$ is connected without assuming the bonding functions are surjective. However, Example 1.8 on page 8 (the function has value 0 everywhere except at 1 where the value is $\{0, 1/2\}$) provides an example of a bonding function having a connected inverse limit but for which $G_1 = G(f^{-1})$ is not connected.

References

- W. T. Ingram and William S. Mahavier, Inverse Limits: From Continua to Chaos, Advances in Mathematics vol. 25, Springer, New York, 2012.
- W. T. Ingram, An Introduction to Inverse Limits with Set-valued Functions, Springer Briefs, Springer, New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4487-9