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Abstract. In this paper we investigate inverse limits of two related parameterized fami-
lies of upper semi-continuous set-valued functions. We include a theorem one consequence
of which is that certain inverse limits with a single bonding function from one of these
families are the closure of a topological ray (usually with indecomposable remainder).
Also included is a theorem giving a new sufficient condition that an inverse limit with set-
valued functions be an indecomposable continuuum. It is shown that some, but not all,
functions from these families produce chainable continua. This expands the list of exam-
ples of chainable continua produced by set-valued functions that are not mappings. The
paper includes theorems on constructing subcontinua of inverse limits as well as theorems
on expressing inverse limits with set-valued functions as inverse limits with mappings.

1. Introduction

In the theory of inverse limits with mappings consideration of inverse limits of families
of mappings was inspired, in part, by dynamical systems. Following in the tradition of
investigating the topology of inverse limits of families of mappings, in this paper we con-
sider inverse limits of a parameterized family of set-valued functions. As in the theory of
inverse limits with mappings, this investigation has led to some interesting phenomena in
continuum theory such as abrupt changes in the topology of the inverse limit over small
neighborhoods of parameter values. Some studies of inverse limits of families of set-valued
functions has already occurred. For instance, the examples presented in [2, Sections 2.4 and
2.8.1] are concerned with families of inverse limits although not much change takes place in
the topology of the inverse limit over large sets of parameter values (big changes do occur
at the extreme values of the parameters). In this article we present a family of examples
in which extreme changes occur quite often as the parameter varies. By-products of this
study are some “new” chainable continua (i.e., new to the study of inverse limits with set-
valued functions that are not mappings) as well as some examples of set-valued functions
that are not mappings having inverse limits that are closures of topological rays with non-
degenerate indecomposable remainders (suggesting reasons to consider [2, Problem 6.47,
p. 80].

2010 Mathematics Subject Classification. 54F15, 54H20.
Key words and phrases. continua, inverse limits, set-valued functions, indecomposable, chainable.

1



INVERSE LIMITS OF FAMILIES OF SET-VALUED FUNCTIONS 2

2. Preliminaries

By a compactum we mean a compact subset of a metric space; by a continuum we mean
a connected compactum. If X is a compactum we denote the collection of closed subsets of
X by 2X ; C(X) denotes the connected elements of 2X . If each of X and Y is a compactum,
a function f : X → 2Y is said to be upper semi-continuous at the point x of X provided
that if V is an open subset of Y that contains f(x) then there is an open subset U of X
containing x such that if t is a point of U then f(t) ⊆ V . A function f : X → 2Y is called
upper semi-continuous provided it is upper semi-continuous at each point of X; by the
graph of f , denoted G(f), we mean {(x, y) ∈ X × Y | y ∈ f(x)}; G(f)−1 = G(f−1). It is
known that if M is a subset of X × Y such that X is the projection of M to its set of first
coordinates then M is closed if and only if M is the graph of an upper semi-continuous
function [5, Theorem 2.1]. If f : X → 2Y is a set-valued function and A ⊆ X, we let
f(A) = {y ∈ Y | there is a point x ∈ A such that y ∈ f(x)}; we say that f is surjective
provided f(X) = Y . In the case that f is upper semi-continuous and single-valued (i.e.,
f(t) is degenerate for each t ∈ X), f is a continuous function. We call a continuous function
a mapping; if f : X → Y is a mapping, we denote that f is surjective by f : X � Y .

We denote by N the set of positive integers. If s = s1, s2, s3, . . . is a sequence, we
normally denote the sequence in boldface type and its terms in italics. Because every
metric space has an equivalent metric that is bounded by 1, we assume throughout that all
of our spaces have metrics bounded by 1. Suppose X is a sequence of compact metric spaces
and fn : Xn+1 → 2Xn is an upper semi-continuous function for each n ∈ N. We call the pair
{X,f} an inverse limit sequence. By the inverse limit of the inverse limit sequence {X,f},
denoted lim←−{X,f}, or for short, lim←−f , we mean {x ∈

∏
i>0Xi | xi ∈ fi(xi+1) for each

i ∈ N}. Inverse limits are nonempty and compact [5, Theorem 3.2]; they are metric spaces
being subsets of the metric space

∏
i>0Xi. It is known that if each bonding function in an

inverse limit sequence on continua is continuum-valued then the inverse limit is a continuum
[6, Theorem 125]. We use the metric d on

∏
i>0Xi given by d(x,y) =

∑
i>0 di(xi, yi)/2

i

where, for each i ∈ N, di is a metric on Xi that is bounded by 1. In the case that each fn
is a mapping our definition of the inverse limit reduces to the usual definition of an inverse
limit on compacta with mappings. If A ⊆ N, we denote by pA the projection of

∏
n>0Xn

onto
∏

n∈AXn given by pA(x) = y provided yi = xi for each i ∈ A. If A = {n}, p{n} is
normally denoted pn. In the case that A ⊆ B ⊆ N, we normally also denote the restriction
of pA to

∏
n∈BXn by pA inferring by context that we are using this restriction. We denote

the projection from the inverse limit into the ith factor space by πi and, more generally,
for A ⊆ N, we denote by πA the restriction of pA to the inverse limit.

For an inverse limit sequence {X,f}, a sequence G of sets traditionally used in the
proof that lim←−f is nonempty and compact is Gn = {x ∈

∏
k>0Xk | xi ∈ fi(xi+1) for

1 ≤ i ≤ n} for each n ∈ N. This sequence also plays a key role in connectedness proofs.

We adopt and use throughout this article the notation G′n = {x ∈
∏n+1

k=1 Xk | xi ∈ fi(xi+1)
for 1 ≤ i ≤ n}. Note that for A = {1, 2, . . . , n+ 1}, G′n = pA(Gn). For a finite sequence of
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functions f1, f2, . . . , fn it is often convenient to denote G′n by G′(f1, f2, . . . , fn). Of course,
Gn = G′(f1, f2, . . . , fn)×

∏
i>n+1Xi and G′(f) = G(f−1) = G′1. We denote the closure of

a set A by Cl(A); Q denotes the Hilbert cube, [0, 1]∞. Suppose each of X,Y, and Z is a
compactum. If f : X → 2Y and g : Y → 2Z , by g ◦ f we mean the set-valued function
from X into 2Z given by g ◦ f(x) = {z ∈ Z | there is a point y of Y such that y ∈ f(x)
and z ∈ g(y)}. If X is a sequence of compacta and f is a sequence of functions such that
fi : Xi+1 → 2Xi for each i ∈ N and i and j are positive integers with i < j, fi j : Xj → 2Xi

denotes the composition fi◦fi+1◦· · ·◦fj−1; we adopt the usual convention that fi i denotes
the identity on Xi.

Theorem 2.1. Suppose X and Y are compact metric spaces, f : X → C(Y ) is an upper
semi-continuous function, and H is a connected subset of X. Then, {(x, y) ∈ G(f) | x ∈
H} is connected.

Proof. Let K = {(x, y) ∈ G(f) | x ∈ H} and suppose K is the union of two mutually
separated sets A and B. There exist two mutually exclusive open sets U and V such that
A ⊆ U and B ⊆ V . For each x ∈ H, {x}×f(x) is a subcontinuum of A∪B so it is a subset of
one of them. Let HA = {x ∈ H | {x} × f(x) ⊆ A} and HB = {x ∈ H | {x} × f(x) ⊆ B}.
Note that HA and HB are mutually exclusive and their union is H. If x ∈ HA then,
because f(x) is compact, there are open sets Ox and Rx such that {x} × f(x) ⊆ Ox ×Rx

and Ox × Rx ⊆ U . Because f(x) is a subset of the open set Rx and f is upper semi-
continuous, there is an open set W containing x and lying in Ox such that if s ∈ W then
f(s) ⊆ Rx. Therefore, if s ∈ W ∩ H, then s ∈ HA so x /∈ Cl(HB). Similarly, if x ∈ HB

then x /∈ Cl(HA), so HA and HB are mutually separated, a contradiction. Thus, K is
connected. �

The following theorem is a corollary of Theorem 2.1. It is similar to [2, Theorem 2.4, p.
16].

Theorem 2.2. Suppose each of X and Y is a compact metric space and H is a connected
subset of X. If f : X → C(Y ) is upper semi-continuous, then f(H) is connected.

Proof. The set f(H) is the image under the projection p2 of the connected set {(x, y) ∈
G(f) | x ∈ H}. �

Theorem 2.3. Suppose X,Y , and Z are metric spaces. If f : X → C(Y ) and g : Y →
C(Z) are upper semi-continuous, then g ◦ f(x) is connected for each x ∈ X, i.e., g ◦ f is
an upper semi-continuous function from X into C(Z).

Proof. It is well known that g ◦ f is upper semi-continuous. If x ∈ X then f(x) is a
continuum. By Theorem 2.2, g(f(x)) is connected and thus is a continuum. But, g(f(x)) =
g ◦ f(x). �

We close this section of preliminary results with a lemma that amounts to little more
than an observation. We often make use of this lemma without specific reference to it.
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Lemma 2.4. Suppose X is a sequence of continua and fi : Xi+1 → 2Xi is an upper semi-
continuous function for each i ∈ N. If p is a point of Xn+1 such that fi n+1(p) is a single
point for each integer i, 1 ≤ i ≤ n, then there is only one point x of G′n such that xn+1 = p.

3. Subcontinua of an inverse limit

The ability to determine subcontinua of an inverse limit is often key to determining
the structure of the entire inverse limit. In the theory of inverse limits with mappings,
identifying subcontinua of the inverse limit can be as simple as finding a sequence of
subcontinua of the factor spaces each term of which is mapped into the previous term by
the bonding map and taking the inverse limit; in fact, each subcontinuum of an inverse
limit with mappings is the inverse limit of its projections. For inverse limits with set-
valued functions, the matter is more complicated; for one thing, a proper subcontinuum
can project onto the entire factor space in each factor space. In our first example, we revisit
such an example from [2] where in Example 2.14 on page 30 a topological conjugate of the
bonding function was discussed. Following this example we discuss determining some of
its subcontinua.
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Figure 1. The graph of the bonding function f and its inverse limit in
Example 3.1

Example 3.1. Let f : [0, 1]→ C([0, 1]) be the upper semi-continuous function whose graph
consists of two straight line intervals, one from (0, 1) to (0, 0) and the other from (0, 0) to
(1, 1). The inverse limit, lim←−f , is a fan with vertex v = (0, 0, 0, . . . ) containing a proper

subcontinuum H such that πn(H) = [0, 1] for each n ∈ N.

Proof. Let M = lim←−f and A0 = {x ∈ M | xi = x1 for each i ∈ N}. For j ∈ N, let

Aj = {x ∈ M | xi = x1 for 1 ≤ i ≤ j and xi = 0 for i > j}. Each An is an arc for n ≥ 0
and each point of A0 is a limit point of a sequence z1, z2, z3, . . . of points of M such that
zn ∈ An for each n ∈ N. It follows that M = A0 ∪ A1 ∪ A2 ∪ · · · is a fan with vertex
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(0, 0, 0, . . . ) and H = A0 is a proper subcontinuum of M such that πn(H) = [0, 1] for each
n ∈ N. �

Subcontinua of the fanM from Example 3.1. By using sequences of bonding functions
having graphs that are subsets of G(f) we obtain a few subcontinua of M .

• Let g1 = Id (the identity on [0, 1]) and gi = f for each i > 1. Then, lim←− g =

A0 ∪A2 ∪A3 ∪A4 ∪ · · · (deleting from M all of the points of A1 except v).

• Let gi = Id for each odd integer i and gi = f for each even integer i. Then,
lim←− g = A0 ∪A2 ∪A4 ∪A6 ∪ · · · .

• Let g be the upper semi-continuous function such that G(g) = G(f) ∩
(
[0, 1/2]2

)
.

Then, lim←− g is a proper subfan of M each arm of which lies in an arm of M .

• Let ϕ be the upper semi-continuous function whose graph consists of the vertical
line from (0, 1) to (0, 0). Let g1 = ϕ and gi = f for i > 1. Then, lim←− g = A1.
Letting g1 = Id, g2 = ϕ, and gi = f for i > 2 results in A2 as the inverse limit.
Using g1 = f, g2 = ϕ, and gi = f for i > 2 yields A1 ∪A2.

Other subcontinua of inverse limits with set-valued functions appear not to arise in
these ways. Part of the problem seems to lie in the fact that the the Subsequence Theorem
fails for inverse limits with set-valued functions. We now turn to additional means of
obtaining subcontinua of an inverse limit. The technique developed in Theorem 3.7 is used
in Example 9.1.

Our next theorem is a convenient restatement of the classic theorem characterizing upper
semi-continuous functions as having graphs that are closed subsets of a product space [6,
Theorem 105]. Here we have reversed the roles of X and Y .

Lemma 3.2. Suppose each of X and Y is a compact metric space and H is a subset of
X × Y such that if y ∈ Y there is a point x ∈ X such that (x, y) ∈ H. Then H is closed if
and only if there is an upper semi-continuous function F : Y → 2X such that H = G(F−1).

An immediate consequence of this lemma is the following lemma stated in a form for
use in this paper. If X1, X2, X3, . . . is a sequence of compact metric spaces and m ∈ N, we
denote by Πm the product X1 ×X2 × · · · ×Xm.

Lemma 3.3. Suppose X is a sequence of compact metric spaces, n is a positive integer, and
H is a closed subset of Πn+1. If pn+1(H) = Xn+1, then there is an upper semi-continuous
function F : Xn+1 → 2Πn such that H is homeomorphic to G(F−1).

Proof. Let Ĥ = {(y, x) ∈ Πn × Xn+1 | (y1, y2, . . . , yn, x) ∈ H}. Then, Ĥ is a closed
subset of Πn × Xn+1 that projects onto Xn+1. By Lemma 3.2, there is an upper semi-

continuous function F : Xn+1 → 2Πn such that Ĥ = G(F−1). Thus, H is homeomorphic
to G(F−1). �
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The points of G(F−1) in Lemma 3.3 are ordered pairs the first term of which is an
n-tuple. The homeomorphism between G(F−1) and H merely ignores the parentheses of
the n-tuple. In the remainder of the paper, we will not make explicit mention of this
homeomorphism.

Remark 3.4. In the case that X is a sequence of metric spaces and fi : Xi+1 → 2Xi is
a surjective upper semi-continuous for each i ∈ N, the function F from Lemma 3.3 is the
upper semi-continuous function Van Nall derives from G′(f1, f2, . . . , fn) and denotes by Fn

in [9]. Furthermore, G′(f1, f2, . . . , fn) = G(F−1
n ) where Fn : Xn+1 → 2Yn for Y1 = X1 and

Yn = G′(f1, f2, . . . , fn−1) if n > 1.

Suppose {X,f} is an inverse limit sequence with surjective bonding functions. Through-
out the remainder of this paper, we adopt Nall’s notation that Fn denotes the upper semi-
continuous function such that G(F−1

n ) = G′(f1, f2, . . . , fn). As a convenience of notation,
when n = 1, we let the otherwise meaningless symbol G′(f1, f2, . . . , fn−1) denote X1.

Theorem 3.5. Suppose X is a sequence of compact metric spaces and fi : Xi+1 → C(Xi)
upper semi-continuous and surjective for each positive integer i. Then, for n ∈ N, Fn is
an upper semi-continuous function from Xn+1 into C(G′(f1, f2, . . . , fn−1)).

Proof. Observe that F1 = f1 : X2 → C(X1). Inductively, assume that k is a positive
integer such that Fk : Xk+1 → C(X1 ×X2 × · · · ×Xk). Choose t ∈ Xk+2. It is sufficient
to show that Fk+1(t) is connected. Because fk+1(t) is connected, by Theorem 2.1, K =
{(s,y) ∈ G(Fk) | s ∈ fk+1(t)} is connected. But K is homeomorphic to {(Fk(s), s) ∈
X1 ×X2 × · · · ×Xk+1 ×Xk+2 | s ∈ fk+1(t)}, a set homeomorphic to Fk+1(t). �

Theorem 3.6. Suppose X is a sequence of continua and f is a sequence of surjective
upper semi-continuous functions such that fi : Xi+1 → C(Xi) for each positive integer i.
If n ∈ N and K is a connected subset of Xn+1, then {x ∈ G′(f1, f2, . . . , fn) | xn+1 ∈ K}
is connected.

Proof. By Theorem 3.5, Fn is continuum-valued, so, by Theorem 2.1, H = {(x,y) ∈
Xn+1 × (X1 × X2 × · · · × Xn) | x ∈ K and y ∈ Fn(K)} is connected. However, {x ∈
G′(f1, f2, . . . , fn) | xn+1 ∈ K} is homeomorphic to H. �

In our next theorem, we obtain another means of constructing a proper subcontinuum of
an inverse limit with set-valued functions. We make use of the techniques of this theorem
in Example 9.1.

Theorem 3.7. Suppose X is a sequence of continua and fi : Xi+1 → C(Xi) is a sur-
jective upper semi-continuous function for each positive integer i. Suppose further that n
is a positive integer and H is a closed proper subcontinuum of G′(f1, f2, . . . , fn) such that
pn+1(H) = Xn+1. Let Y1 = G′(f1, f2, . . . , fn−1) and g1 = F where H = G(F−1). For
i > 1, let Yi = Xn+i−1 and gi = fn+i−1. If F is continuum-valued, then lim←− g is a proper
subcontinuum of lim←−f .
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Proof. Because M = lim←−f is a continuum, it follows that Y1 = πA(M) where A =

{1, 2, . . . , n} is a continuum. Because each gi is continuum-valued and all the factor spaces
are continua, lim←− g is a continuum. Because H is a proper subset of G′(f1, f2, . . . , fn) such

that pn+1(H) = Xn+1, it follows that there is a point of z ∈ G′(f1, . . . , fn−1) that is not in
g1(Xn+1). For each i ∈ N, fi is surjective so there is a point x ∈M such that πA(x) = z.
The point x does not belong to lim←− g, thus, lim←− g is a proper subcontinuum of M . �

We close this section with a theorem giving one other means of constructing subcontinua
of inverse limits with set-valued functions, in this case by embedding copies of the sets G′n
into an inverse limit with a single bonding function through imposing conditions on the
bonding function. This theorem is due to Marsh [8, Theorem 2.1] although his statement
is somewhat different and more general; we state it in a form for use in this paper.

Theorem 3.8. (Marsh) Suppose X is a continuum, f : X → 2X is an upper semi-
continuous function, Y is a compact subset of X, and g : Y → 2X is an upper semi-
continuous function such that G(g) ⊆ G(f) and g−1 is a mapping of X into Y . If
n ∈ N, then ϕ : G′n → lim←−f given by ϕ(x) = (x1, x2, . . . , xn+1, g−1(xn+1), g−2(xn+1),

g−3(xn+1), . . . ) is a homeomorphism that embeds G′n in the inverse limit.

In Section 3 of [8] Marsh has several additional theorems that speak to recognizing
subcontinua of inverse limits with a single set-valued bonding function. In the next section
we include one additional theorem on obtaining subcontinua of an inverse limit with set-
valued functions.

4. Inverse limits with set-valued functions as inverse limits with mappings

There are ways to express inverse limits with set-valued functions as inverse limits with
mappings. Generally, in order to do so, one has to give up something. The price normally
involves (even in the single bonding function case) changing to a sequence of (perhaps)
more complicated factor spaces and using a sequence of bonding mappings. However, in
case these new factor spaces are relatively simple spaces, the price can be well worth it.

Our next theorem allows us to express closed subsets of inverse limits with set-valued
functions as inverse limits with mappings. Of course, this result encompasses proper sub-
continua as well as the entire inverse limit. Recall that we have adopted the convention
that G′(f1, f2, . . . , fi−1) = X1 for i = 1.

Theorem 4.1. Suppose X is a sequence of compacta, fi : Xi+1 → 2Xi is a surjective upper
semi-continuous function for each positive integer i, and K is a closed subset of lim←−f . For

i ∈ N let Ai = {1, 2, . . . , i}. Then,

(1) if Ki = πAi(K) and gi = pAi |Ki+1 for i ∈ N, K is homeomorphic to lim←−{K, g},
(2) if Ki is a closed subset (resp., subcontinuum) of G′(f1, f2, . . . , fi−1), gi = pAi |Ki+1,

and gi(Ki+1) ⊆ Ki for each i ∈ N, then lim←−{K, g} is a homeomorphic to a closed

subset (resp., subcontinuum) of lim←−f .
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Proof. For (1), note that gi is a mapping of Ki+1 onto Ki. Let N = lim←− g. Then, h : K � N

given by h(x) = (x1, (x1, x2), (x1, x2, x3), . . . ) is a homeomorphism.

Statement (2) holds because inverse limits on compacta (resp., continua) with map-
pings are compacta (resp., continua) and ϕ embeds lim←− g in lim←−f where ϕ is given by

ϕ
(
(x1,(x1, x2, ),(x1, x2, x3),. . .

)
= (x1, x2, x3, . . . ). �

Corollary 4.2. Suppose X is a sequence of compacta and fi : Xi+1 → 2Xi is a surjective
upper semi-continuous function for each positive integer i. Then, lim←−f is homeomorphic

to an inverse limit on the sequence of spaces X1, G
′(f1), G′(f1, f2), G′(f1, f2, f3), . . . with

bonding functions that are mappings.

Next we state another theorem due to Marsh [8, Corollary 2.3], although his statement
of the theorem is slightly different and contains more information in its conclusion. In
Theorem 4.3 one needs a little more hypothesis than is needed in Theorem 4.1, but one
gains substantial information about the bonding mappings that can be of particular value
in proving fixed point theorems.

Theorem 4.3. (Marsh) Suppose X is a sequence of compacta and fi : Xi+1 → 2Xi is
an upper semi-continuous function for each i. Suppose further there is a positive integer k
such that, for i ≥ k, G(fi) contains the graph of an upper semi-continuous function gi such
that g−1

i is a mapping of Xi into Xi+1. Then, lim←−f is homeomorphic to an inverse limit

on copies of the spaces G′n that lie in lim←−f with bonding mappings that are retractions.

The topic of representing inverse limits with set-valued functions as inverse limits with
mappings has been considered before. For instance, because inverse limits can be viewed
as intersections of closed sets, they admit a natural representation as an inverse limit,
[6, Theorem 171, p. 122]. Corollary 4.2 is essentially a restatement of this theorem that
usefully reduces the dimension of the factor spaces (in the case that each Xn is finite
dimensional).

5. Closures of topological rays

In the theory of inverse limits with mappings, finding dense topological rays has played
a rather significant role in determining the nature of the inverse limit. This led the author
to ask when inverse limits with upper semi-continuous bonding functions that are not
mappings have dense rays, see [2, Question 6.43]: What are sufficient conditions on a
single bonding function on [0, 1] so that the inverse limit is the closure of a topological ray?
In this section we provide a partial answer to this question.

Theorem 5.1. Suppose f : [0, 1] → 2[0,1] is an upper semi-continuous function such that
f(0) = 0, a and c are numbers such that 0 < a ≤ c < 1, h : [0, c] � [0, 1] is a home-
omorphism of [0, c] onto [0, 1] with no fixed point in [a, c] such that h = f |[0, c], and
f([a, 1]) ⊆ [a, 1]. Let g = f |[a, 1], K = lim←− g, and M = lim←−f . If G′n is an arc for each
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positive integer n, then M is a chainable continuum that is the closure of a topological ray
R with remainder K.

Proof. Because each G′n is an arc, it follows from Corollary 4.2 that M is chainable. Fur-
thermore, the point zn ∈ G′n having all coordinates 0 is an endpoint of G′n. To see this,
first recall that f |[0, c] is a homeomorphism and f has no fixed point in [a, c]; thus, for each
t, 0 ≤ t < a, there is only one point of G′n having first coordinate t. So, if G′n − {zn} is the
union of two mutually separated sets A and B, then A′ = A∪ {zn} and B′ = B ∪ {zn} are
nondegenerate arcs containing zn. Therefore, because p1(A′) and p1(B′) are nondegenerate
intervals containing 0, one is a subset of the other. If t, 0 < t < a, is common to these two
intervals, the point of G′n having first coordinate t is a point of A ∩B, a contradiction.

For each n ∈ N, using Theorem 3.8, let ϕn be the Marsh homeomorphism embedding G′n
in M given by ϕn(x) = (x1, x2, . . . , xn+1, h

−1(xn+1), h−2(xn+1), . . . ) and let αn = ϕn(G′n).
Because G′n is an arc having zn as an endpoint, αn is an arc having (0, 0, 0, . . . ) as an
endpoint. If x ∈ G′n then (x1, x2, . . . , xn+1, h

−1(xn+1)) ∈ G′n+1, so αn ⊆ αn+1. However,

αn is a proper subset of αn+1 because no point of αn has (n+2)nd coordinate greater than c
but some point of G′n+1 has last coordinate 1 giving αn+1 a point with (n+2)nd coordinate
1. Let R =

⋃
i>0 αi. Then, R is a topological ray being the union of a strictly monotonic

sequence of arcs with a common endpoint. Suppose x ∈ K. Let yi = (x1, x2, . . . , xi+1,
h−1(xi+1), h−2(xi+1), . . . ). Note that yi /∈ K because h−1(xi+1), h−2(xi+1), h−3(xi+1), . . .
converges to a fixed point of h, a point not in [a, 1]. Then, y1,y2,y3, . . . is a sequence of
points of R that converges to x. �

The condition in Theorem 5.1 that G′n be an arc can be difficult to determine by looking
at the graph of the bonding function. This leads to the following question.

Question 5.2. What are sufficient conditions on a single set-valued bonding function on
[0, 1] so that G′n is an arc for each n ∈ N?

The reader interested in this question should note that in Example 7.1 below, by letting
the parameter a = 1/2n, one obtains a function for which G′n+2 is not an arc but G′i is an
arc for each integer i, 1 ≤ i ≤ n+ 1.

Nall has shown that the arc is the only finite graph that is an inverse limit on [0, 1] with
a single upper semi-continuous function. Results in this section indicate that the following
question could be of interest.

Question 5.3. Is there an upper semi-continuous function f : [0, 1] → 2[0,1] such that
lim←−f is the closure of a topological ray with remainder a simple triod?

6. Indecomposability and the full projection property

In this section we prove a slightly more general version of Theorem 4.3 of [1] (see Theorem
6.2 below). Also, Lemma 6.1 below is a stronger version of Lemma 4.2 from that paper.
In the following version of the two-pass condition, we define it for a sequence of upper
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semi-continuous functions intead of a single function and we omit the requirement that the
mutually exlusive connected sets U and V be open.

Suppose X is a sequence of continua and fi : Xi+1 → 2Xi is an upper semi-continuous
function for each positive integer i. The sequence f is said to satisfy the two-pass condition
provided if n is a positive integer then there are an integer m > n and two mutually
exclusive connected subsets U and V of Xm such that (1) fim|U and fim|V are mappings
for each integer i, n ≤ i ≤ m, and (2) Cl(fnm(U)) = Cl(fnm(V )) = Xn. For constant
sequences of bonding functions (i.e., Xi = X and fi = f : X → 2X for each i ∈ N),
the two-pass condition reduces to the following: there are a positive integer m and two
mutually exclusive connected subsets U and V of X such that f i|U and f i|V are mappings
for 1 ≤ i ≤ m and Cl(fm(U)) = Cl(fm(V )) = X.

The following lemma slightly strengthens the statement of Lemma 4.2 of [1] by relaxing
the requirement that the connected sets U and V be open. The hypothesis that U and V
be open was used in the proof given in [1] but it was not necessary, so almost no changes
to that proof are required. The proof is short and we include it for the convenience of the
reader.

Lemma 6.1. Suppose T is an arc or a simple n-od for some positive integer n and H
and K are two proper subcontinua of T whose union is T . If U and V are two mutually
exclusive connected subsets of T then one of U and V is a subset of one of H and K.

Proof. If T is an arc, let J denote a separating point of T ; if T is an n-od, let J denote its
junction point. The point J cannot belong to both U and V ; suppose J /∈ U . Denote by A
the end point of T such that U ⊆ [J,A]. Assume A ∈ H. If J ∈ H then U ⊆ H. If J /∈ H
and U is not a subset of either H or K, then H ∩ K ⊆ U . If A ∈ U , then T − U ⊆ K
so V ⊆ K. If A /∈ U , then T − U is the union of two mutually separated sets C and D
with A ∈ C. Then, V ⊆ C or V ⊆ D. Because C ⊆ H and D ⊆ K, we have V ⊆ H or
V ⊆ K. �

If {X,f} is an inverse limit sequence and M = lim←−f , we say that {X,f} has the full

projection property provided that if H is a subcontinuum of M such that πi(H) = Xi

for infinitely many integers i then H = M (Example 3.1 fails to have the full projection
property). Only minor changes need to be made in the proof of Theorem 4.3 of [1] to show
that the following theorem holds. Again its proof is relatively short but we include it for
the convenience of the reader.

Theorem 6.2. Suppose T1, T2, T3, . . . is a sequence such that if i is a positive integer, then
Ti is an arc or a simple ni-od for some positive integer ni and, for each positive integer
j, fj : Tj+1 → 2Tj is an upper semi-continuous function. If the sequence f satisfies the
two-pass condition and {T ,f} has the full projection property then lim←−f is indecomposable.

Proof. Let M = lim←−f and suppose M is the union of two proper subcontinua H and K.

Because {T ,f} has the full projection property, there is a positive integer n such that
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if j ≥ n then πj(H) 6= Tj and πj(K) 6= Tj . Because the sequence f satisfies the two-
pass condition, there are an integer m > n and two mutually exclusive connected subsets
U and V of Tm such that fim|U and fim|V are mappings for each i, n ≤ i ≤ m, and
Cl(fnm(U)) = Tn and Cl(fnm(V )) = Tn. Because Tm = πm(H) ∪ πm(K), by Lemma 6.1,
one of U and V is a subset of one of πm(H) and πm(K). Suppose U ⊆ πm(H). We show
that fnm(U) ⊆ πn(H). To that end, if t is a point of fnm(U) there is a point s ∈ U
such that fnm(s) = t. Because s ∈ πm(H), there is a point x ∈ H such that xm = s.
Then, because fim|U is a mapping for n ≤ i ≤ m, xn = t so t ∈ πn(H). However,
Cl(fnm(U)) = Tn contradicting that πn(H) 6= Tn. �

Other studies of indecomposability of inverse limits with set-valued functions include [7],
[10], [11], and [12]. As was the case in [1], none of these address detecting indecomposability
of the inverse limit by looking at compositions of the bonding functions as in Theorem 6.2.

7. examples

(0,0)

(1/2,1)

(1/2,a)

(1,1)

Figure 2. The graph of a typical bonding function in Example 7.1

In this section we consider examples of inverse limits with a single bonding function
chosen from a one-parameter family of set-valued functions. Specifically, for a ∈ [0, 1],
let fa : [0, 1] → C([0, 1]) be the upper semi-continuous set-valued function whose graph
consists of three straight line intervals, one from (0, 0) to (1/2, 1), one from (1/2, 1) to
(1/2, a), and one from (1/2, a) to (1, 1). For each a ∈ [0, 1] the function fa has a graph
without flat spots, thus its inverse limit is a tree-like continuum [4, Corollary 4.1]. Here we
determine the parameter values for which the inverse limit is chainable, i.e., homeomorphic
to an inverse limit on arcs with bonding functions that are mappings. It is known that for



INVERSE LIMITS OF FAMILIES OF SET-VALUED FUNCTIONS 12

a = 1/2 the inverse limit is not chainable because it contains a triod [2, Example 3.11] and
for a = 0 the inverse limit is indecomposable [2, Example 3.9] and chainable [3, Example
5.1]. For a = 1, fa is a mapping and the inverse limit is an arc [6, Example 11].

Example 7.1. Suppose a is a number, 0 ≤ a < 1. Let fa be the upper semi-continuous
set-valued function given by fa(t) = 2t for 0 ≤ t < 1/2, fa(1/2) = [a, 1], and fa(t) =
2(1−a)(t−1) + 1 for 1/2 < t ≤ 1. Then, lim←−fa is chainable if and only if fna (a) 6= 1/2 for

each n ∈ N. Moreover, if fna (a) 6= 1/2 for each n ∈ N, lim←−fa is the closure of a topological

ray with remainder lim←− ga where ga = f |[a, 1]. If 1/2 < a ≤ 1, lim←−f is an arc.

Proof. Note that G(f−1
a ) is the union of three mappings ϕ1, ϕ2, and ϕ3 where

ϕ1 : [0, 1]→ [0, 1] is given by ϕ1(x) = x/2,
ϕ2 : [a, 1]→ [0, 1] is given by ϕ2(x) = 1/2,
ϕ3 : [a, 1]→ [0, 1] is given by ϕ3(x) = (x− 1)/(2(1− a)) + 1.

Suppose fna (a) 6= 1/2 for each n ∈ N. We show that G′n is an arc for each n. From this
it follows by Theorem 4.3 that lim←−fa is chainable and by Theorem 5.1 that lim←−fa is the
closure of a topological ray with remainder lim←− ga.

To see that G′n is an arc for each n ∈ N, we proceed inductively. Note that G′1 = G(f−1
a )

is an arc containing (1, 1). Assume k is an integer such that G′k is an arc containing
(1, 1, . . . , 1). By Lemma 2.4, only one point of G′k has last coordinate a because f ia(a)

is a single point for 1 ≤ i ≤ k. It follows that A = G′k ∩
(
[0, 1]k × [a, 1]

)
is an arc.

Define homeomorphisms Φ1 : G′k → [0, 1]k+2,Φ2 : A → [0, 1]k+2, and Φ3 : A → [0, 1]k+2

by Φi(x) = (x1, x2, . . . , xk+1, φi(xk+1)) for i = 1, 2, 3. Let A1 be the arc Φ1(G′k) and Ai

be the arc Φi(A) for i = 2, 3; G′k+1 = A1 ∪ A2 ∪ A3 and (1, 1, . . . , 1) ∈ A3. Moreover,

A1 ∩A2 = {(1, 1, . . . , 1, 1/2)}, A2 ∩A3 = {(fka (a), . . . , a, 1/2)}, and A1 ∩A3 = ∅. It follows
that G′k+1 is an arc containing (1, 1, . . . , 1) and the induction is complete.

To see that lim←−fa is an arc for 1/2 < a ≤ 1, observe that in this parameter range

fna (a) 6= 1/2 for n ∈ N. Thus, by Theorem 5.1 the inverse limit is the closure of a ray with
remainder lim←− ga. But, lim←− ga is {(1, 1, . . . , 1)} so lim←−fa is an arc.

On the other hand, suppose n is a positive integer such that fna (a) = 1/2 but, in case
n > 1, f ia(a) 6= 1/2 for i < n. Note that a ≤ 1/2 because, if a > 1/2 and n is a positive
integer, fna (t) > t for 1/2 ≤ t < 1. We show that lim←−fa contains a triod. We may assume

that a < 1/2 because it is known that lim←−fa contains a triod for a = 1/2 [2, Example

3.11]. Because G(fa) contains the inverse of the mapping ϕ1, by Theorem 3.8, lim←−fa
contains a copy of G′n+2. Hence, in order to show that the inverse limit contains a triod,

it is sufficient to show that G′n+2 contains a triod. For t ∈ [0, 1], f−1
a (t) contains only

one, two, or three points. Therefore, f−1
a (1/2) ∪ f−2

a (1/2) ∪ · · · ∪ f−ka (1/2) is finite for
each positive integer k. Because a ∈ f−na (1/2), there is a point b, a < b < 1/2, such that

(a, b] ∩
(
f−1
a (1/2) ∪ f−2

a (1/2) ∪ · · · ∪ f−(n+1)
a (1/2)

)
= ∅. Thus, f ia|(a, b] is a mapping for
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1 ≤ i ≤ n + 1. For t ∈ (a, b], 1/2 < fna (t) because f ia|(a, b] is order preserving for each
i, 1 ≤ i ≤ n. Let
α = {x ∈ G′n+2 | x = (t, 1/2, fn−1

a (a), . . . , a, 1/2) for a ≤ t ≤ 1},
β = Cl

(
{x ∈ G′n+2 | x = (fn+1

a (t), . . . , fa(t), t, 1/2) for a < t < b}
)
,

γ = Cl
(
{x ∈ G′n+2 | x = (fn+1

a (t), . . . , fa(t), t, ϕ3(t)) for a < t < b}
)
.

Each of α, β, and γ is an arc. Because limt→a+ f
n
a (t) = 1/2 and fna (t) > 1/2 for

t ∈ (a, b], we have limt→a+ f
n+1
a (t) = a. It follows that p = (a, 1/2, fn−1

a (a), . . . , a, 1/2) ∈
α ∩ β ∩ γ. In fact, α ∩ β ∩ γ = {p} because p is the only point of either β or γ
with next-to-last coordinate a and it is the only point of γ with last coordinate 1/2. The
point (1, 1/2, fn−1

a (a), . . . , a, 1/2) ∈ α − (β ∪ γ); (fna (b), . . . , fa(b), b, 1/2) ∈ β − (α ∪ γ);
(fna (b), . . . , fa(b), b, ϕ3(b)) ∈ γ − (α∪ β). It follows that α∪ β ∪ γ is a simple triod lying in
G′n+2. �

Remark 7.2. In Example 7.1, for a 6= 1, each bonding function has a graph consisting
of one vertical line and two straight line intervals. Because of the linearity, in order for
a to satisfy the condition fna (a) = 1/2, the parameter satisfies a polynomial equation with
rational coefficients. Thus, the chainability of the inverse limit occurs for uncountably
many values for a, 0 < a < 1/2.

For 1/2 < a < 1, lim←−fa is an arc, but we do not address the question whether, for two

different parameter values in [0, 1/2], the inverse limits are topologically different. However,
the following seems to be an interesting problem.

Question 7.3. Suppose a is a number, 0 ≤ a < 1. Let fa be the upper semi-continuous
set-valued function given by fa(t) = 2t for 0 ≤ t < 1/2, fa(1/2) = [a, 1], and fa(t) =
2(1− a)(t− 1) + 1 for 1/2 < t ≤ 1. If 0 ≤ b < c ≤ 1/2, are lim←−fb and lim←−fc topologically
different?

8. Cores

In this section and the next we address a natural question: in Example 7.1, what is the
nature of lim←− ga where ga = fa|[a, 1]? Because of the similarity to the case with inverse
limits of mappings, we refer to ga as the core of fa and lim←− ga as the core of lim←−fa.
In our next example we consider a two-parameter family of interval-valued upper semi-
continuous functions on [0, 1]. Each core of a bonding function from Example 7.1 produces
a continuum homeomorphic to an element of a member of this family. Thus, by what is
shown in Example 8.2, if a is a parameter value, 0 < a < 1/2, such that fna (a) 6= 1/2 for
each n ∈ N then the core of lim←−fa is an indecomposable chainable continuum.

In [7], Kelly and Meddaugh prove the following theorem; we make use of it in our next
example.
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(0,b)

(c,1)

(c,0)

(1,1)

Figure 3. The graph of a typical bonding function in Example 8.2

Theorem 8.1. (Kelly and Meddaugh) Suppose X is a sequence of continua, fi :
Xi+1 → 2Xi is upper semi-continuous for each i ∈ N, and lim←−f is a continuum. If, for each

n ∈ N, there exist points a and b in Xn+1 such that G′(f1, f2, . . . , fn) is irreducible between
the sets {x ∈ G′(f1, f2, . . . , fn) | xn+1 = a} and {x ∈ G′(f1, f2, . . . , fn) | xn+1 = b}, then
{X,f} has the full projection property.

Example 8.2. Let b and c be numbers, 0 ≤ b < 1 and 0 < c < 1. Let gb,c : [0, 1]→ C([0, 1])
be the upper semi-continuous function whose graph consists of three straight line intervals,
one from (0, b) to (c, 1), one from (c, 1) to (c, 0), and one from (c, 0) to (1, 1). Then, if
gnb,c(0) 6= c for each n ∈ N, lim←− gb,c is an indecomposable chainable continuum.

Proof. We show that, for each positive integer n, G′n is an arc that is irreducible from
{x ∈ G′n | xn+1 = 0} to {x ∈ G′n | xn+1 = 1}. We proceed inductively. Note that
G′1 is an arc irreducible from {(x, y) ∈ [0, 1]2 | y = 0} to {(x, y) ∈ [0, 1]2 | y = 1}. In
fact, the graph of f−1 is the union of three mappings: two homeomorphisms ϕ1 : [b, 1] →
[0, c] and ϕ3 : [0, 1] � [c, 1] and a constant mapping ϕ2 : [0, 1] � {c}. Suppose k is a
positive integer such that G′k is an arc that is irreducible from {x ∈ G′k | xk+1 = 0}
to {x ∈ G′k | xk+1 = 1}. Because gb,c(1) = 1 and gnb,c(0) 6= c for each n ∈ N, it

follows that (gk−1
b,c (b), . . . , gb,c(b), b, 0) and (1, 1, . . . , 1) are the only points of G′k having

last coordinate 0 and 1, respectively, so they are the endpoints of G′k. Let α = {x ∈
G′k | xk+1 ≥ b}; α is connected by Theorem 3.6 so α is an arc. Then, G′k+1 is the
union of three arcs, A1 = {x ∈ G′k+1 | (x1, . . . , xk+1) ∈ α and xk+2 = ϕ1(xk+1)} and
Aj = {x ∈ Gk+1 | (x1, . . . , xk+1) ∈ G′k and xk+2 = ϕj(xk+1)} for j ∈ {2, 3}. Because

A1 ∩A2 = {(1, 1, . . . , 1, c)} and A2 ∩A3 = {(gk−1
b,c (b), . . . , gb,c(b), b, 0, c)} while A1 ∩A3 = ∅,
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it follows that G′k+1 is an arc with endpoints p0 = (gkb,c(b), . . . , gb,c(b), b, 0) and p1 =

(1, 1, . . . , 1). Because p0 and p1 are the only points of G′k+1 having last coordinate 0 and
1, respectively, G′k+1 is irreducible from {x ∈ G′k+1 | xk+2 = 0} to {x ∈ G′k+1 | xk+2 = 1}.

Let Yn = G′n for each n ∈ N. Because Yn is an arc for each n ∈ N that is irreducible from
{x ∈ G′n | xn+1 = 0} to {x ∈ G′n | xn+1 = 1}, it follows by Theorem 8.1 that {Y , gb,c}
has the full projection property. Because G(f) contains the graph of the inverse of the
mapping ϕ3, M is chainable by Theorem 4.3.

To see that M is indecomposable, we use Theorem 6.2 by showing that the sequence
f1, f2, f3, . . . satisfies the two-pass condition where fi = gb,c for each i ∈ N. There are

a point p ≥ max{b, c} and a positive integer k such that gkb,c(p) = c and gib,c(p) > c for

1 ≤ i < k. Let U = (gb,c|[0, c))−1((p, 1)) and V = (gb,c|(c, 1))−1((p, 1)). Then, U and

V are mutually exclusive connected subsets of [0, 1] such that Cl(fk+2(U)) = [0, 1] and
Cl(fk+2(V )) = [0, 1]. So, M is indecomposable. �

Question 8.3. Suppose c is a fixed parameter value, 0 < c < 1. If 0 ≤ a < b < 1, are
lim←− ga,c and lim←− gb,c topologically different?

9. Nonchainable examples

In this section we complete a study of the class of examples from Example 8.2 by showing
that the continua obtained using a single bonding function from the family in Example 8.2
having the property that gnb,c(b) = c for some positive integer n are decomposable tree-like
continua that are not chainable. For reasons similar to those showing that only countably
many of the examples from Example 7.1 are not chainable, for a fixed value of c, there are
only countably many values of b such that lim←− gb,c is not chainable.

Example 9.1. Suppose 0 < c < 1 and 0 < b < 1. Let gb,c : [0, 1] → C([0, 1]) be the upper
semi-continuous function whose graph consists of three straight line intervals, one from
(0, b) to (c, 1) along with one from (c, 1) to (c, 0) and one from (c, 0) to (1, 1). If gnb,c(0) = c
for some positive integer n, then lim←− gb,c is a decomposable tree-like continuum that is not
chainable.

Proof. For simplicity of notation, let f = gb,c and denote by M the inverse limit, lim←−f .
That M is tree-like is a consequence of the fact that f is an upper semi-continuous function
on [0, 1] without flat spots [4, Corollary 4.1].

We show that M is not chainable by showing that M contains a triod. This part of the
proof is similar to the construction of a triod given in the proof for Example 7.1. There
is a positive number d such that f j((0, d]) does not contain c for 1 ≤ j ≤ n because
f−1(c) ∪ f−2(c) ∪ · · · ∪ f−n(c) is a finite set containing 0. Let A = {x ∈ M | xn+2 = 0
and xn+k = c for k ≥ 3}; B = Cl({x ∈ M | xn+2 ∈ (0, d] and xn+k = c for k ≥ 3});
C = Cl({x ∈ M | xn+2 ∈ (0, d], xn+3 = (1 − c)(xn+2 − 1) + 1 and xn+k = c for k ≥ 4}).
By the choice of d, z = (0, c, fn−1(0), . . . , b, 0, c, c, c, . . . ) is the only point of either B or
C having 0 as its (n+2)nd coordinate. Each of A,B, and C is an arc and A ∩ B ∩ C =
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A ∩ B = A ∩ C = B ∩ C = {z}. Let T = A ∪ B ∪ C. That T is a triod follows from the
fact that (1, c, . . . , b, 0, c, c, c) ∈ T − (B ∪ C), (fn+1(d), . . . , d, c, c, c) ∈ T − (A ∪ C), and
(fn+1(d), . . . , d, (1− c)(d− 1) + 1, c, c, c) ∈ T − (A ∪B).

To see that M is decomposable, we show that M contains a proper subcontinuum with
interior. Let K = Cl({x ∈ G′n+1 | xn+2 > 0}). Note that K is a continuum because

{x ∈ G′n+1 | xn+2 > 0} is connected by Theorem 3.6. Further, (0, c, fn−1(0), . . . , b, 0) is the
only point of K having last coordinate 0, and, because (1, 1, . . . , 1) ∈ K, pn+2(K) = [0, 1].
Therefore, because K is a closed subset of G′n+1, by Lemma 3.3 there is an upper semi-

continuous function F : Xn+2 → 2G
′
n such that G′n+1 = G(F−1). Because f : [0, 1] →

C([0, 1]), by Theorem 3.5, the Nall function Fn+1 : Xn+2 → C(G′n). However, because
F (t) = Fn+1(t) for t > 0 and F (0) is a single point, F : Xn+2 → C(G′n). Let X1 = G′n
and Xi = [0, 1] for i > 1; let ϕ1 = F and ϕi = f for i > 1. Then, {X,ϕ} is an inverse
sequence on continua with continuum-valued functions so lim←−ϕ is a continuum that is

homeomorphic to H = Cl({x ∈ M | xn+2 > 0}), a subcontinuum of M containing the
open set M ∩

(
[0, 1]n+1× (0, 1]×Q

)
. The point (1, c, fn−1(0), . . . , b, 0, c, c, c, . . . ) is a point

of M −H so H is a proper subcontinuum of M with interior. �

It is interesting to observe that the proper subcontinuum H constructed in Example 9.1
has the property that πn(H) = [0, 1] for each n ∈ N so the inverse limit sequence fails to
have the full projection property.

(0,1/2)

(3/4,0)

(1,1)

(1,1/2)

(0,1/4)

(1,3/4)

(1/2,0)

(1/2,1)

Figure 4. The graphs of the bonding functions f1 (left) and f2 (right) in
Example 10.1

10. Corrigendum

There is an error in the books [2] and [6]. The statements of Theorem 126 on page 90
of [6] and Theorem 2.8 on page 18 of [2] are incorrect. In private correspondence with the
author Mark Marsh provided the following example that illustrates the error.

Example 10.1. (Marsh) Let f1 : [0, 1] → 2[0,1] be given by f1(t) = 1/2 for 0 ≤ t < 3/4
and f1(t) = {1/2, 4t − 3} for 3/4 ≤ t ≤ 1. Note that f−1

1 : [0, 1] → C([0, 1]). Let
f2 : [0, 1] → C([0, 1] be given by f2(t) = 1/2t + 1/4 for t 6= 1/2 and f2(1/2) = [0, 1]. For
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(1/2,0)

(1/2,1)

.

(0,1/2) (1,1/2)

(1,0)

Figure 5. The graph of f1 ◦ f2 in Example 10.1

n > 2, let fn be the identity on [0, 1]. Then (1, 0) is an isolated point for f1 ◦ f2 and, thus,
lim←−f is not connected.

The following is a corrected statement of Theorem 126 in [6].

Theorem. Suppose {Xi, fi} is an inverse limit sequence on Hausdorff continua with
upper semi-continuous bonding functions such that fi is Hausdorff continuum-valued for
each i ∈ N (or fi(Xi+1) is connected with f−1

i : fi(Xi)→ Xi+1 Hausdorff continuum-valued
for each i ∈ N) then lim←−f is a Hausdorff continuum.

The following is a corrected statement of Theorem 2.8 in [2].

Theorem. Suppose X is a sequence of subintervals of [0, 1] and f is a sequence of upper
semi-continuous functions such that fi : Xi+1 → 2Xi for each positive integer i. Suppose
further that fi has connected values for each i ∈ N (or for each i ∈ N, fi(Xi+1) is connected
and f−1

i (x) is an interval for each x ∈ fi(Xi+1)). Then, lim←−f is a continuum.
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