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Abstract. Many mathematicians pursue their art out of curiosity,
not because they have some predetermined application in mind.
That does not necessarily mean that they are not interested in
applications to “real world” problems–it is just not their primary
motivation. In this talk intended for a campus-wide audience of
students and faculty I will discuss a research topic in my field of
mathematics, topology, that has, to my surprise, been found to
have applications outside mathematics.

1. INTRODUCTION

Applications of mathematics are sometimes found in unexpected places.
Pure mathematicians are seldom, if ever, motivated by application of their
work. Some even go so far as to say they do not expect their work ever
to be applied. I have heard it attributed to G. H. Hardy that he partic-
ularly liked one of his theorems simply because, in his opinion, it would
never have any practical use. If you saw the movie, The Man Who Knew
Infinity, you are aware that it featured Hardy and his relationship with
Ramanujan. I could not confirm that Hardy actually said that, but it is
my understanding that some of his work on prime factorization comprises
the basis for modern methods of secure electronic communication.

What I could find was the following quote from Hardy’s essay, A math-
ematician’s apology, which I highly recommend that you read sometime.
I easily located it online using Google.

"I have never done anything ‘useful’. No discovery of mine has made,
or is likely to make, directly or indirectly, for good or ill, the least differ-
ence to the amenity of the world."

Unlike Hardy, I have always harbored the hope that, some day, perhaps
not in my lifetime, some of the things I worked on would be used to help
solve problems outside mathematics.
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Today, I will talk of potential applications of some of my work in the
field of economics.

2. TOPOLOGICAL EQUIVALENCE

My area of mathematics is topology. I have heard it said that a topol-
ogist is a mathematician who cannot tell the difference between a donut
and a coffee cup. Now, I can assure everyone that, so far, I have never
bitten into my coffee cup thinking it was a donut nor have I tried to pour
my morning coffee into my donut. However, there is a sense in which that
statement is true.

Imagine for a moment that you take a lump of Play-Doh. Roll it out
into a long tubular shape and join the ends to form our ‘donut’. Now,
hold this ‘donut’ up on its side, and without tearing or breaking it, make
a small indention in it. Continue pushing and enlarging the indentation
until it begins to take a shape that could hold coffee. With some more
adjustments, you may now have in hand a crude coffee cup. In case
you had trouble following my directions in your head, see Figure 1 for a
picture of the process I just described. It is taken from the Life Science
Library book, Mathematics, published in 1963. What I have described is
a topological transformation from the ‘donut’ to the ‘coffee cup’. These
objects, being topologically equivalent, form the basis of the statement
about topologists.

Two things that are not topologically equivalent are the straight line
interval and the circle. One reason for this is the following. Imagine a
piece of string (the interval) and a rubber band (the circle). No matter
where you cut the rubber band with one cut it remains in one piece.
Unless you somwhow ‘magically’ cut the string at the end, however, the
result is two pieces.

Now, for an illustration of similar looking objects that are not topo-
logically equivalent. Imagine taking a long strip of paper and gluing the
ends together to form a cylindrical object. Again, taking a long strip of
paper, this time we glue the ends together but in doing so we introduce
a twist. These two objects so obtained are not topologically equivalent.
One was to see a difference is as follows. Take a pair of scissors and start
cutting the first object, the cylinder, along its center. When we get all
the way around, we wind up with two pieces. With the second object,
such a cut leaves the object in one piece. Interestingly, the twist gives
us a means of making a mark on both sides of a strip of paper without
removing the pencil from the paper. This second object with the twist is
sometimes referred to as a Möebius strip.
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Figure 1. Morphing a donut into a coffee cup.

3. DYNAMICS

Topology is the study of transformations of all sorts. When we molded
the Play-Doh from the torus into the coffee cup, we were making a topo-
logical transformation. Before that, when we took the Play-Doh and stuck
its ends together, we were making a continuous transformation as we were
with the strip of paper when we glued the ends together, with or without
the twist.

Generally, a dynamical system consists of some object and a continu-
ous transformation of that object into itself. In a dynamical system, one
construction of particular interest is the following: choose some starting
point and follow its progress under the transformation as we apply the
transformation over and over. If this settles into some sort of pattern af-
ter many iterations, the pattern is often referred to as an attractor in the
system. This process becomes especially interesting if one uses a param-
eterized family of transformations. The biologist, Robert May, studying
population dynamics in the 70s called particular attention to the param-
eterized logistic family of transformations of the interval [0, 1], namely,
fλ(x) = 4λx(1− x) where the parameter λ ∈ [0, 1]. This was followed in
the 80s by a study of the behavior of this system by Feigenbaum employ-
ing a hand-held calculator. Computer generated pictures of the attractors
soon became popular in so-called bifurcation diagrams (see Figure 2 for
the diagram for the logistic family). Buzz words like CHAOS served to
draw additional attention to dynamical systems.

About the same time Benoit Mandelbrot generated colorful attractive
pictures related to iteration of the origin by the simple parameterized
family of functions of a complex variable, f(z) = z2 + c. See Figure 3 for
an illustration of the Mandelbrot set.

Long before these events that were made possible by computing ma-
chinery, however, mathematicians like Sarkovskii, Fatou, and Julia laid
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Figure 2. A bifurcation diagram for the logistic family.

the theoretical groundwork that explained the emerging computer graph-
ics.

4. INVERSE LIMITS

I would like to turn now to a construction that makes use of an ob-
ject and a continuous transformation of the object into itself. We just
mentioned dynamical systems and the dynamicist’s interest in following
iterations under the transformation. However, instead of following some-
place in the object under the transformation, let us instead look backward
to see where our starting place came from. Now, there could be two or
even more choices (as with the spot where we glued the strip of paper
together). If there is a choice, we make a choice and repeat the process.
If we continue this process, we could end up with an infinite sequence of
places inside the object we started with. To make this interesting topo-
logically, we decide that two such sequences are close together if they
are very close for many, many steps of the process; and we consider all
possible such sequences.
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Figure 3. The Mandelbrot set.

To get a feeling for this process, let’s consider a couple of simple func-
tions. Both are simple parabolas. The first one is y = x2. Its graph is
shown in Figure 4 . We restrict our attention to the interval [0, 1]. That
graph is shown in Figure 5. Select some number in the interval and look
back to see where it came from. If 0 is our choice, it came from 0. That,
of course, came from 0, and so forth; so the sequence starting with 0 is
0, 0, 0, . . . . Similarly, if our starting point is 1, it came from 1, etc. so
this time the sequence is 1, 1, 1 . . . . Starting from 1/2, this came from
1/
√
2, which came from 1/

√√
2, . . . . Notice, no matter where we start,

at every stage there is only one choice of where it came from; so every se-
quence is uniquely determined by its starting point. Thus, the collection
of sequences is pretty much like the interval itself; i.e., the collection of
sequences is topologically equivalent to the interval. Interesting, but not
too interesting.
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Figure 4. The parabola y = x2.

Let’s take a different parabola: y = 4x(1− x). This parabola is one in
that parameterized family of parabolas studied in population dynamics
suggested by the biologist Robert May back in the 1970s. Its graph is
shown in Figure 6 and on [0, 1] in Figure 7. As before, we restrict our
attention to [0, 1]. Now, starting with 1, notice that it comes from 1/2;
but 1/2 comes from two possibilities. We choose one of the possibilities,
but looking back it comes from two possibilities. In fact, no matter where
we start, we quickly are faced with a choice for the next term of the
sequence. One place we could start is at 0; doing so gives us 0 and 1
as the choices of where it came from. By choosing 0, and continuing to
make this choice, we see that 0, 0, 0, . . . is a sequence in the collection
of sequences. But, very close by to this sequence is one that starts out
with 0s for a long time but then we opt to choose 1 which then forces
1/2, and then gets us back to two choices, etc. The collection of all
sequences we obtain seems to be very complex. In fact, it is! Figure 8
is a picture depicting something that is topologically equivalent to the
collection of sequences–i.e., the ‘coffee cup’ for our ‘donut’ of sequences.
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Figure 5. The parabola y = x2 on [0, 1].

This thing is quite interesting. It contains the famous Smale horseshoe,
an attractor in a dynamical system made famous in the 1960s by Steven
Smale. But, it was studied much earlier, almost 100 years ago, by a Polish
mathematician, Janiszewski (and subsequently by the well-known Polish
mathematician Knaster who first drew this picture of it). Both were
trying to understand what was at the time a recent development by L.
E. J. Brouwer who in 1910 produced the first example of something now
known as an indecomposable continuum–a compact, connected set that
is not the union of two proper compact, connected subsets. This is not
easy to imagine even existing–most of the objects we normally encounter
are not like this. When we took the scissors to the cylinder earlier, in
essence, we were getting it to be the union of two proper subcontinua.

What just happened? We began with a simple parabola and with the
construction of this collection of sequences we produced something that
was totally unknown just a little over 100 years ago! Maybe it is a bit eas-
ier to understand why someone might find it intellectually stimulating to
study this type of construction in more detail. This construction goes by
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Figure 6. The parabola y = 4λx(1− x).

the name of inverse limit. It has proven to be invaluable as a tool for con-
structing complicated spaces from simple objects. I spent a lot of the early
part of my career making use of the construction to build complicated ob-
jects that answered several questions that had eluded mathematicians in
continuum theory for a number of years. Many others employed the con-
struction to answer other continuum theoretic questions. I am pleased
to note that it is still being found of value. These “applications” of the
inverse limit construction in mathematics helped prompt me, along with
Bill Mahavier of Emory University, to gather a lot of the techniques of
inverse limits into a Springer book after my retirement here at Rolla.

5. APPLICATIONS

But, what about applications of inverse limits outside of mathematics?
People working in economics have found that the inverse limit construc-
tion is perfect for one way they have of studying their economic models.
A model in economics is in its simplest form some set and a function on
that set used to describe the change from the present economic situation
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Figure 7. The parabola y = 4λx(1− x) on [0, 1].

Figure 8. An indecomposable continuum
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to a future one. Does that sound familiar? The interpretation is perhaps
different but it is still a dynamical system. Sometimes, however, the re-
lationship between the present state and the future state is not expressed
by a function (single-valued). Instead, there can be multiple potential
outcomes. In some cases, though, some future state gives rise to a single
present state. Economists describe this phenomenon as “backward eco-
nomics", and their interest is expressed by sequences of states each term of
which determines a unique previous term. Looking at all such sequences
is exactly the set-up for an inverse limit. Mathematicians working with
economists have written about this very situation. Two such are papers
by Raines and Medio and by Kennedy, Stockman, and Yorke. Raines
was actually one of my master’s degree students here who went on to
earn a D.Phil. at Oxford. If you are interested, I refer you to these pa-
pers as a starting point for diving deeper into the application of the pure
mathematical construction of an inverse limit into the field of economics.

Alfredo Medio and Brian Raines, Inverse limit spaces arising from prob-
lems in economics, Topology and Its Applications 153 (2006), 3437–3449.

Judy Kennedy, David R. Stockman, and James A. Yorke, Inverse limits
and an implicitly defined difference equation from economics, Topology
and Its Applications 154 (2007), 2533–2552.

In conclusion, one never knows where the next application of mathe-
matics may arise. Ideas pursued by a mathematician out of his or her own
curiosity may turn out to have far reaching applications far from the mind
of the person first looking into them. There was a phrase that cropped
up in the 70s and 80s–“applicable mathematics”. I always thought it was
pompous for anyone to claim they knew which mathematics would ever
be applied and which (by inference) would not, even if the mathematician
like Hardy thought something they produced would never be useful.

To sum up then my message is a simple one: curiosity may have killed
the cat but it motivates the mathematician as I am confident that it does
researchers across this campus.
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