A CHARACTERIZATION OF INDECOMPOSABLE COMPACT CONTINUA

W. T. Ingram and Howard Cook

There are many characterizations of indecomposability of compact continua. There is wide interest in characterizing properties of a space in terms of open covers of the space. The purpose of this note is to characterize indecomposability of a compact continuum in terms of open covers of the continuum.

Space is assumed to be metric. If M is a compact continuum it is true that there is a sequence G_1 , G_2 , G_3 , ... of finite open covers of M such that (1) for each positive integer n, G_n is a coherent collection, (2) for each n, G_{n+1} is a strong refinement of G_n (the closure of each set in G_{n+1} is a subset of some set in G_n), (3) for each n, the mesh of G_n is less than $\frac{1}{n}$, (4) each set in G_n contains a point of M not in any other set in G_n and (5) M is the common part of G_1^* , G_2^* , G_3^* , ... Such a sequence of finite open covers of M is called a defining sequence for M.

THEOREM. The compact continuum M is indecomposable if and only if there is a defining sequence G_1 , G_2 , G_3 , ... for M such that if i is a positive integer there is a positive integer j greater than i such that if G_j is the sum of two coherent collections L_1 and L_2 then L_1^* or L_2^* intersects every open set in G_j .

PROOF. Suppose M is a decomposable compact continuum and G_1 , G_2 , G_3 , ... is a defining sequence of M. Then M is the sum of two proper subcontinua

H and K. There is a point P in H which is not in K and a point Q in K which is not in H. Moreover, there is a positive integer i such that no set in G_i which contains P contains a point of K and no set in G_i which contains Q contains a point of H. Then if j is an integer greater than i and L_1 and L_2 are subcollections of G_j containing the sets in G_j which intersect H and K respectively, then (1) L_1 and L_2 are coherent subcollections of G_j , (2) G_j is the sum of L_1 and L_2 , and (3) neither L_1^* nor L_2^* intersect every open set in G_i .

Suppose M is a compact continuum and it is true that if G_1 , G_2 , G_3 , ... is a defining sequence for M then there is a positive integer i such that if j is an integer greater than i then there exist coherent collections L_1 and L_2 whose sum is G_j and each of L_1^* and L_2^* fail to intersect some open set in G_1 . Assume i=1. Then there are two sets g and h in G_1 and a subsequence G_{n_1} , G_{n_2} , G_{n_3} , ... of G_1 , G_2 , G_3 , ... such that G_1 and for each integer k greater than 1 G_n is the sum of two coherent collections G_1 and G_2 with the property that G_1 does not intersect g and G_2 and G_2 does not intersect h. Then the sequential limiting sets H and K of the sequences G_1 , G_2 , G_3 , ... and G_2 , G_3 , ... G_2 , G_3 , ... and G_2 , G_3 , ... G_1 , G_2 , G_3 , ... and G_2 , G_3 , ... G_1 , G_2 , G_3 , ... and G_2 , G_3 , ... G_1 , G_2 , G_3 , ... and G_2 , G_3 , ... G_1 , G_2 , G_3 , ... and G_2 , G_3 , ... G_2 , G_3 , ... and G_3 , ... and G_3 , G_3 , ... and G_3 , and $G_$

University of Houston