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CONCERNING NONCONNECTED INVERSE LIMITS
WITH UPPER SEMI-CONTINUOUS SET-VALUED

FUNCTIONS

W. T. INGRAM

Abstract. In this paper we present a sequence f2, f3, f4, . . . of
upper semi-continuous set-valued functions with the property that
the graph of fn

n is not connected but the graph of fk
n is connected

for 1 ≤ k < n. Thus, for each positive integer n, lim←−fn is not
connected but the difficulty of detecting this fact increases with n.

1. Introduction

Inverse limits with upper semi-continuous set-valued functions are in-
creasingly being studied. Continuum theorists are particularly interested
in the question of when such inverse limits are connected. For inverse
limits with mappings, this is always the case when the factor spaces are
continua. With upper semi-continuous set-valued functions, connected-
ness of the inverse limit can easily fail. For example, the inverse limit on
[0, 1] using the single bonding function f given by f(x) = {0, 1} for each
x ∈ [0, 1] is the Cantor set. Moreover, the inverse limit can fail to be
connected even if the graph of the function is connected (see Example 3.3
or [5, Example 4]). In this paper, we present some additional examples
in the form of a sequence of set-valued functions with connected graphs
having inverse limits that are not connected.

2. Basic definitions and preliminary results

If X is a topological space, we use 2X to denote the collection of all
closed subsets of X and C(X) to denote the collection of closed and
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connected subsets of X. If each of X and Y is a topological space, a set-
valued function f : X → 2Y is called upper semi-continuous provided that
if O is an open subset of Y that contains f(x), then there is an open subset
U of X containing x such that if t ∈ U , then f(t) ⊆ O. If H ⊆ X, by f(H)
we mean {y ∈ Y | there is a point x ∈ X such that y ∈ f(x)} and f is
said to be surjective provided f(X) = Y . By a Hausdorff continuum we
mean a compact, connected Hausdorff space, whereas by a continuum we
mean a compact, connected metric space. If X1, X2, X3, . . . is a sequence
of topological spaces, we denote the product of the sequence by

∏
i>0Xi

and endow it with the product topology. We adopt the convention of
denoting sequences (even finite sequences) in boldface type and the terms
of sequence in italics. Thus, if x is a sequence, we denote its terms by
x1, x2, x3, . . . . Because the points of

∏
i>0Xi are sequences, it should be

permissible to write such a point as x = x1, x2, x3, . . . where xi ∈ Xi for
each positive integer i, but we adopt the convention of denoting points of
the product by enclosing them in parentheses as x = (x1, x2, x3, . . . ). If
A ⊆ {1, 2, 3, . . . }, we denote by πA :

∏
i>0Xi →→

∏
i∈AXi the function

given by πA(x) = y where yi = xi for each i ∈ A. For each set A of
positive integers, πA is a continuous function, i.e., a mapping. In case
A = {n}, we denote π{n} by πn. If B ⊆ X × Y , then B−1 = {(y, x) ∈
Y ×X | (x, y) ∈ B}.

Suppose X1, X2, X3, . . . is a sequence of compact Hausdorff spaces
and, for each positive integer i, fi : Xi+1 → 2Xi is an upper semi-
continuous function. By the inverse limit of the inverse sequence {Xi, fi},
denoted lim←−{Xi, fi} or normally lim←−f , we mean {x ∈

∏
i>0Xi | xi ∈

fi(xi+1) for each positive integer i}. It is known that lim←−f is nonempty
if each bonding function fi is upper semi-continuous [3]. If f : X → 2Y is
a set-valued function, the graph of f , denoted G(f), is {(x, y) ∈ X × Y |
y ∈ f(x)}. It is known that ifX and Y are compact Hausdorff spaces, then
f : X → 2Y is upper semi-continuous if and only ifG(f) is closed [3]. A se-
quence of subsets of

∏
i>0Xi, the terms of which approximate the inverse

limit, is useful in the proof that the inverse limit is nonempty as well as in
connectedness arguments. We use these sets in this article as well. If n is
a positive integer, let Gn = {x ∈

∏
i>0Xi | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}.

The set π{1,2}(G1) = G(f1)
−1. If f : X → 2Y and g : Y → 2Z are set-

valued functions, the composition g ◦f : X → 2Z is given by (x, z) ∈ g ◦f
if and only if there is a point y ∈ Y such that y ∈ f(x) and z ∈ g(y). For
convenience, we often denote g ◦ f by gf . If f : X → 2X , we denote f ◦ f
by f2 and, for n > 2, fn = fn−1 ◦f . If X is a sequence of compact Haus-
dorff spaces and f is a sequence of upper semi-continuous functions such
that, for each positive integer i, fi : Xi+1 → 2Xi and j is a positive integer
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greater than i, we define fi j : Xj → 2Xi by fi j = fi ◦ fi+1 ◦ · · · ◦ fj−1. If
f : X → 2Y is an upper semi-continuous function and A is a subset of X,
by the restriction of f to A, denoted f |A, is meant {(x, y) ∈ f | x ∈ A}.

The following theorem appears in [3, Theorem 4.8]. Variations of
this theorem allowing such hypotheses as f−1

i : Xi → C(Xi+1) for each
i ∈ {k | fk is not Hausdorff continuum-valued} that yield the same con-
clusion (see [3, Theorem 4.9]), as well as extensions to inverse limit sys-
tems over directed sets (see [4]) have been proved.

Theorem 2.1. If X is a sequence of Hausdorff continua and f is a se-
quence of upper semi-continuous set-valued functions such that for each
positive integer i, fi : Xi+1 → C(Xi), then lim←−f is a Hausdorff contin-
uum.

In [3, p. 121], it was observed that in an inverse limit sequence with
surjective upper semi-continuous bonding functions f1, f2, f3, . . . , if t ∈
X1, there is a point x ∈ lim←−f such that x1 = t. The following theorem is
almost as easy to prove. Its proof is left to the reader.

Theorem 2.2. Suppose X is a sequence of compact Hausdorff spaces
and fk : Xk+1 → 2Xk is upper semi-continuous and surjective for each
positive integer k. If i < j and t ∈ fi j(s), then there is a point x ∈ lim←−f
such that xi = t and xj = s.

The condition in Theorem 2.1 that the bonding functions be Hausdorff
continuum-valued easily yields that G(fi) is connected for each positive
integer i. Because a subset B of a product X×Y is connected if and only
if B−1 is connected, that G(fi) is connected is also a consequence of the
connectedness of the inverse limit with surjective bonding functions be-
cause π{i,i+1}(lim←−f) = G(f−1

i ) = (G(fi))
−1. More generally, we have the

following observation (see [5, Example 4] where it was nicely employed)
which follows from the fact that π{i,j} is continuous for each two integers
i and j with i < j.

Theorem 2.3 (Nall). If X is a sequence of compact Hausdorff spaces
and f is a sequence of surjective upper semi-continuous functions such
that fk : Xk+1 → 2Xk for each positive integer k and lim←−f is connected,
then G(fi j) is connected for each two integers i and j with i < j.

Proof. Let M = lim←−f . Suppose i and j are positive integers, 1 ≤ i < j.
It is not difficult to establish that if (x, y) ∈ π{i,j}(M), then x ∈ fi j(y).
Moreover, by Theorem 2.2, if x ∈ fi j(y), there is a point of M having
ith coordinate x and jth coordinate y. It thus follows that (G(fi j))

−1 =
π{i,j}(M), so G(fi j) is connected. �



206 W. T. INGRAM

The converse of Theorem 2.3 is not true. Examples showing this include
[5, Example 4], as well as Example 3.2 and Example 3.3 in §3 of this arti-
cle. Furthermore, the hypothesis that the bonding functions be surjective
is necessary for if f : [0, 1]→ 2[0,1] is the function such that f(t) = t/3 for
0 ≤ t < 1 and f(1) = {1/3, 2/3}, then lim←−f = {(0, 0, 0, . . . )} is connected
even though G(f) is not connected.

3. Nonconnected Inverse Limits

The proof of Theorem 2.1 in [3] is achieved by showing that Gn = {x ∈∏
i>0Xi | xi ∈ fi(xi+1) for 1 ≤ i ≤ n} is a Hausdorff continuum for each

positive integer n. From this it follows that the inverse limit is a Haus-
dorff continuum, being the intersection of a nested sequence of Hausdorff
continua. Indeed, the condition that Gn is a Hausdorff continuum for
each n is equivalent to the connectedness of the inverse limit. Moreover,
lim←−f is a Hausdorff continuum if and only if G′

n = π{1,2,...,n+1}(Gn) is
connected for each positive integer n. Unfortunately, it is often not very
easy to check that either Gn or G′

n is connected.

For ordinary inverse limits with mappings, we are often able to glean
information about the inverse limit by examining composites of the bond-
ing maps. Such techniques have proven less informative for inverse limits
with set-valued functions. However, for inverse limits with a single sur-
jective upper semi-continuous bonding function f , Theorem 2.3 provides
a reasonably simple way to detect that lim←−f is not connected by looking
at the graphs of f, f2, f3, . . . until we find an integer n such that G(fn)
is not connected. In [5, Example 4], Van Nall presents a nice example of
a surjective upper semi-continuous function f : [0, 1] → 2[0,1] such that
G(f) is connected but G(f2) is not connected. Nall’s function is the
union of two mappings φ : [0, 1] → [0, 1] and ψ : [1/2, 1] →→ [0, 1] where
φ(x) = x/2 and ψ(x) = 2x− 1 (in Nall’s paper, φ was denoted by f1 and
ψ by f2). For Nall’s function f , it follows from Theorem 2.3 that lim←−f is
not connected (in fact, this is the essence of Nall’s proof that the inverse
limit is not connected). Nall’s example caused the author to ask if there
is an upper semi-continuous function f : [0, 1]→ 2[0,1] such that G(f) and
G(f2) are both connected but G(f3) is not connected. The function f3 of
Example 3.2 below is such a function. In fact, in Example 3.2, we present
a sequence f2, f3, f4, . . . of upper semi-continuous functions, each term of
which is a function from [0, 1] into 2[0,1] such that, if n is a positive integer,
then G(fkn) is connected for 1 ≤ k < n but G(fnn ) is not connected.

In [3, Example 1], it was shown that lim←−f is not connected where
the graph of f is the union of four straight line intervals, one from (0, 0)
to (1/4, 1/4); one from (0, 0) to (1, 0); one from (1, 0) to (1, 1); and one
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from (3/4, 1/4) to (1, 1). It is worth remarking that, for that function f ,
although G(f) is connected, G(f2) is not connected, so Nall’s techniques
provide an alternative means of proving that lim←−f is not connected.

One additional remark is in order before we present our examples.
Nall’s function is the union of two mappings, one surjective defined on
[0, 1] and one defined only on [1/2, 1] (but, of course, not the maps φ and
ψ used above to define the example). The reader should contrast Nall’s
example with [2, Theorem 3.3] from which it follows that an inverse limit
on [0, 1] is a continuum when the bonding function is the union of a
mapping with a surjective mapping where both maps have domain the
entire interval [0, 1].

Before turning to our examples, we present a simple lemma that is
useful in our study of composites of upper semi-continuous functions.

Lemma 3.1. Suppose X is a compact Hausdorff space and f : X → 2X

is an upper semi-continuous function. If k is a positive integer, then
G(fk+1) = {(x, y) ∈ X × X | there exists a point t ∈ X such that x ∈
f−1(t) and y ∈ fk(t)}.

Proof. y ∈ fk+1(x) if and only if there is a point t ∈ X such that t ∈ f(x)
and y ∈ fk(t); therefore, we have that y ∈ fk+1(x) if and only if there is
a point t ∈ X such that x ∈ f−1(t) and y ∈ fk(t). �

In the following example, we specify an upper semi-continuous function
from [0, 1] into 2[0,1] by identifying its graph. We use Id[0,1] to denote the
identity on [0, 1].

Example 3.2. Suppose n is an integer, n ≥ 2, and let fn : [0, 1]→ 2[0,1]

be the function whose graph consists of three straight line intervals, one
from (0, 0) to (1, 1); one from (1/n, 0) to (2/n, 2/n); and one from (1/n, 0)
to (1, 1− 1/n). Then G(fkn) is connected for 1 ≤ k < n and G(fnn ) is not
connected. (See Figure 1 for the graphs of f2 and f22 and Figure 2 for the
graphs of f5 and f55 .)

Proof. Choose a positive integer n ≥ 2. Observe that fn is the union of
three homeomorphisms:

g1 = Id[0,1],
g2 : [1/n, 1]→ [0, 1− 1/n] where g2(x) = x− 1/n,
g3 : [1/n, 2/n]→ [0, 2/n] where g3(x) = 2x− 2/n.

It is clear that G(fn) is connected because G(g3) intersects both G(g1)
and G(g2). Note that the points (0, 0) and (1/n, 0) belong to G(fn),
and the entire graph of G(fn) lies in [0, 1 − 1/n]2 except for two non-
separating half-open line intervals lying in the strip (1 − 1/n, 1] × [0, 1].
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(0,0)

(1,1)

(1/2,0)

(1,1/2)

(0,0)

(1,1)

(1,0)(1/2,0) (3/4,0)

Figure 1. The graphs of f2 and f22 .

(0,0) (1/5,0)

(2/5,2/5)

(1,1)

(1,4/5)

(0,0)

(1,1)

(1,0)

Figure 2. The graphs of fn and fnn for n = 5.

Thus, G(fn|[0, 1−1/n]) is connected. Clearly, G(fn|[0, 2/n]) is connected,
whereas fn([0, 2/n]) = [0, 2/n] and fn([0, 1− 1/n]) = [0, 1− 1/n].

Let φ1 : [0, 1]2 → [0, 1]2 be given by φ1(x, y) = (x, y), let φ2 : [0, 1 −
1/n]2 → [1/n, 1]× [0, 1− 1/n] be given by φ2(x, y) = (x+1/n, y), and let
φ3 : [0, 2/n]2 → [1/n, 2/n]× [0, 2/n] be given by φ3(x, y) = (x/2+1/n, y).
Note that p1 ◦φ1 = g−1

1 ◦p1, p1 ◦φ2 = g−1
2 ◦p1|[0, 1−1/n]2, and p1 ◦φ3 =

g−1
3 ◦ p1|[0, 2/n]2 where p1 denotes the projection of [0, 1]2 to its first

coordinate space.
We now show that if 1 ≤ k ≤ n − 1, then G(fk+1

n ) = φ1(G(f
k
n)) ∪

φ2(G(f
k
n |[0, 1 − 1/n]) ∪ φ3(G(f

k
n |[0, 2/n]) − {(2/n, 0)}). To see this, first

let (x, y) be a point of G(fk+1
n ). By Lemma 3.1, there is a point t ∈ [0, 1]

such that x ∈ f−1
n (t) and y ∈ fkn(t). There is an integer i, 1 ≤ i ≤ 3, such
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that x = g−1
i (t) and, for such an i, (x, y) = φi(t, y) with (t, y) ∈ G(fkn).

If i = 1, (x, y) ∈ φ1(G(f
k
n)). If i = 2, then 0 ≤ t ≤ 1 − 1/n so (x, y) ∈

φ2(G(f
k
n |[0, 1− 1/n])). If i = 3 and (x, y) ̸= (2/n, 0) then t ∈ [0, 2/n] and

(x, y) ∈ φ3(G(f
k
n |[0, 2/n])−{(2/n, 0)}). In case (x, y) = (2/n, 0), (x, y) =

φ2(1/n, 0), so (x, y) ∈ φ2(G(f
k
n |[0, 1 − 1/n])). On the other hand, if

(x, y) ∈ φ1(G(f
k
n))∪φ2(G(f

k
n |[0, 1−1/n])∪φ3(G(f

k
n |[0, 2/n])−{(2/n, 0)}),

then for some i, 1 ≤ i ≤ 3 and some point t ∈ [0, 1], x ∈ g−1
i (t) and

y ∈ fkn(t). It follows from Lemma 3.1 that (x, y) ∈ G(fk+1
n ).

Next, we proceed inductively to show that G(fkn) is a connected set
containing (0, 0) and (m/n, 0) for 1 ≤ k ≤ n − 1 and 1 ≤ m ≤ k. We
have observed this to be true for k = 1 because G(fn) is connected as are
G(fn|[0, 1− 1/n]) and G(fn|[0, 2/n]) and (0, 0) and (1/n, 0) are points of
G(fn).

Suppose j is an integer, 1 ≤ j < n− 1, such that G(f jn) is a connected
set as are G(f jn|[0, 1− 1/n]) and G(f jn|[0, 2/n]−{(2/n, 0)}) (we need only
to remove the point (2/n, 0) when j > 1 because, of course, this point
is not in G(fn)). Suppose also that (0, 0) and (m/n, 0) are in G(f jn)
for 1 ≤ m ≤ j. Then φ1(G(f

j
n)) is connected as are φ2(G(f

j
n|[0, 1 −

1/n])) and φ3(G(f
j
n|[0, 2/n] − {(2/n, 0)}). The point (1/n, 0) belongs

to all three of these sets because φ1(1/n, 0) = (1/n, 0) and (1/n, 0) ∈
G(f jn), whereas φ2(0, 0) = φ3(0, 0) = (1/n, 0) and (0, 0) belongs to both
G(f jn|[0, 1 − 1/n]) and G(f jn|[0, 2/n]). Thus, G(f j+1

n ) is connected and
contains (0, 0) because φ1(0, 0) = (0, 0). Further, the entire graph of f j+1

n

lies in [0, 1−1/n]2 except for j+2 nonseparating half-open intervals lying
in the strip (1 − 1/n, 1] × [0, 1] (the extra one that is not part of the
graph of f jn comes from φ2(G(f

j
n|[0, 1 − 1/n]))), so G(f j+1

n |[0, 1 − 1/n])
is connected. Finally, G(f j+1

n |[0, 2/n]) − {(2/n, 0)} is connected. To see
this, observe that the portion of G(f jn) mapped into [0, 2/n]2 by φ2 is the
union of the straight line interval from (0, 0) to (1/n, 1/n) and the single
point (1/n, 0). Thus, φ2(G(f

j
n|[0, 1− 1/n]))∩ [0, 2/n]2 is the union of the

straight line interval from (1/n, 0) to (2/n, 1/n) and the point (2/n, 0).
It follows that G(f j+1

n |[0, 2/n])− {(2/n, 0)} is connected being the union
of three connected sets φ1(G(f

j
n|[0, 2/n]) − {(2/n, 0)}, the straight line

interval from (1/n, 0) to (2/n, 1/n), and φ3(G(f
j
n|[0, 2/n]−{(2/n, 0)}) all

containing (1/n, 0). Because (m/n, 0) is in G(f jn) for 1 ≤ m ≤ j and
φ2(i/n, 0) = ((i + 1)/n, 0) for each i, 1 ≤ i ≤ j, (m/n, 0) ∈ G(f j+1

n ) for
1 ≤ m ≤ j + 1.

Therefore, we have that G(fkn) is connected for 1 ≤ k ≤ n − 1 and
(1 − 1/n, 0) ∈ G(fn−1

n ). It now follows that φ2(1 − 1/n, 0) = (1, 0) is in
G(fnn ). However, (1, 0) is an isolated point of G(fnn ). To see this, observe
that fnn (1) is a discrete set with minimum 0 and f−n

n (0) is a discrete
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set with maximum 1. Because G(fnn ) has an isolated point, it is not
connected. �

By way of contrast, there is an upper semi-continuous function f :
[0, 1]→ 2[0,1] such that G(fn) is connected for each positive integer n, but
lim←−f is not connected. One such example, due to Jonathan Meddaugh, is
a simple modification to [3, Example 1, p. 126] that attaches the vertical
line from (0, 0) to (0, 1) to that function as shown in Figure 3.

Example 3.3 (Meddaugh). Let f : [0, 1] → 2[0,1] be the union of five
straight line intervals, one from (0, 0) to (0, 1); one from (0, 0) to (1/4, 1/4);
one from (0, 0) to (1, 0); one from (1, 0) to (1, 1); and one from (3/4, 1/4)
to (1, 1). Then G(fn) is connected for each positive integer n, but G2 is
not connected, so lim←−f is not connected. (See Figure 3.)

(0,0)

(1/4,1/4)

(3/4,1/4)

(1,0)

(1,1)(0,1)

Figure 3. The graph of the function in Meddaugh’s example.

Proof. The graph of f is clearly connected and, for n > 1, G(fn) = [0, 1]2,
so G(fn) is connected for each positive integer n. Let N be the set of
points x of G2 such that x1 = x2 = 1/4 and x3 = 3/4. Then N is a closed
subset of G2. However, O = (1/8, 3/8)×(1/8, 3/8)×(5/8, 7/8)× [0, 1]∞ is
an open set such that N = G2∩O, so N is also relatively open in G2. �

Meddaugh’s example makes it reasonable to ask about the connected-
ness of the sets Gi for the functions fn from Example 3.2. We address
this in the following example.
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Example 3.4. Let n ≥ 2 be an integer and fn be the function from
Example 3.2. Then the set Gk (G′

k, respectively) is connected for 1 ≤ k ≤
n− 1, but Gn (G′

n, respectively) is not connected.

Proof. We only deal with the question of the connectedness of G′
k =

π{1,2,...,k+1}(Gk) because Gk is connected if and only if G′
k is connected.

It is not difficult to see that, for the function f2, G′
1 is connected, but

(0, 1/2, 1) is an isolated point of G′
2.

Suppose n is an integer greater than 2. Our proof is by induction on
the number of composites, but first we make several observations that are
useful in the proof.

The function f−1
n is the union of three homeomorphisms:

h1 = Id[0,1],
h2 : [0, 1− 1/n]→ [1/n, 1] where h2(t) = t+ 1/n,
h3 : [0, 2/n]→ [1/n, 2/n] where h3(t) = t/2 + 1/n.

Observe that for 1 ≤ i ≤ 3, hi = g−1
i where g1, g2, and g3 are the maps

defined in Example 3.2.

Suppose j is an integer, 2 ≤ j ≤ n − 1, and for each x ∈ [0, 1]j , let
φj,1 : [0, 1]j → [0, 1]j+1 be defined by φj,1(x) = (x1, . . . , xj , h1(xj)), let
φj,2 : [0, 1]j−1 × [0, 1− 1/n]→ [0, 1]j−1 × [0, 1− 1/n]× [1/n, 1] be defined
by φj,2(x) = (x1, . . . , xj , h2(xj)), and let φj,3 : [0, 2/n]j → [0, 2/n]j ×
[1/n, 2/n] be defined by φj,3(x) = (x1, . . . , xj , h3(xj)). Note that if 1 ≤
j ≤ n− 1 and 1 ≤ i ≤ 3, then φj,i is continuous and

G′
j = φj,1(G

′
j−1) ∪ φj,2(G

′
j−1 ∩ ([0, 1]j−1 × [0, 1− 1/n])) ∪

φj,3(G
′
j−1 ∩ [0, 2/n]j). (∗)

Continuing with our observations, for 2 ≤ j ≤ n − 1, let Kj = {x ∈
G′

j−1 | x1 = 0 and xj = 1/n} (thus, x ∈ Kj if and only if there is an
integer m, 1 ≤ m < j, such that xi = 0 for i ≤ m and xi = 1/n for
i > m). Let Dj = {x ∈ [0, 1/n]j | xi = x1 for 1 ≤ i ≤ j}. So Dj is a
subset of the diagonal of [0, 1]j . Then G′

j−1 ∩ [0, 1/n]j = Dj ∪Kj . This
is easily established by induction because it holds for j = 2 and for 2 <
m < n− 1; the only point of G′

m ∩ [0, 1/n]m+1 that is not in φm,1(G
′
m−1)

is φm,2(0, 0, . . . , 0) = φm,3(0, 0, . . . , 0) = (0, 0, . . . , 0, 1/n) ∈ Km+1, and
(0, . . . , 0) is the only point of G′

m−1 mapped by either φj,2 or φj,3 into
[0, 1/n]m+1.

Let L2 = ∅ and, for j > 2, let Lj = φj−1,2(Kj−1). Then x ∈ Lj if and
only if there is an integerm, 2 ≤ m < j−1, such that xi = 0 for 1 ≤ i ≤ m,
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xi = 1/n for m < i < j, and xj = 2/n. Because h3(2/n) = 2/n, we have
that φj,3(Lj) ⊆ φj,1(G

′
j−1) from which it follows by using (*) that

G′
j = φj,1(G

′
j−1) ∪ φj,2(G

′
j−1 ∩ ([0, 1]j−1 × [0, 1− 1/n])) ∪

φj,3((G
′
j−1 ∩ [0, 2/n]j)− Lj). (∗∗)

We now proceed inductively to show that G′
k is connected for 1 ≤ k ≤

n − 1. Note that G′
1 is a connected set containing (0, 0) and (2/n, 2/n),

and G′
1∩([0, 1]×[0, 1−1/n]) and G′

1∩[0, 2/n]2−L2 are both connected (see
Figure 4). Although it is easy to see that all three of these are connected
sets, in order to give the flavor of one particular part of the argument
in our inductive proof, observe that G′

1 contains two points, each having
1 as a second coordinate, namely, (1 − 1/n, 1) and (1, 1). Each of these
points is an endpoint of an arc crossing the strip [0, 1]× [1− 1/n, 1]; the
two arcs are mutually exclusive and neither arc separates G′

1. The set
G′

1 ∩ ([0, 1] × [0, 1 − 1/n]) is connected because it is the closure of the
complement of the union of these two arcs.

(0,0)

(2/5,2/5)

(0,1/5)

(1,1)(4/5,1)

Figure 4. The set G′
1(f5).

Suppose j is an integer, 2 ≤ j ≤ n − 1 such that G′
j−1 is a connected

set containing the points (0, 0, . . . , 0) and (2/n, 2/n, . . . , 2/n) of [0, 1]j ,
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and G′
j−1 ∩ ([0, 1]j−1 × [0, 1− 1/n]) and (G′

j−1 ∩ [0, 2/n]j)− Lj are both
connected. From (**),

G′
j = φj,1(G

′
j−1) ∪ φj,2(G

′
j−1 ∩ ([0, 1]j−1 × [0, 1− 1/n])) ∪

φj,3((G
′
j−1 ∩ [0, 2/n]j)− Lj).

Each of the three sets in this union is connected, being a continuous
image of a connected set. The points (0, 0, . . . , 0) and (2/n, 2/n, . . . , 2/n)
of [0, 1]j+1 are elements of φj,1(G

′
j−1) so they are points of G′

j . Because
φj,1(2/n, . . . , 2/n) = φj,3(2/n, 2/n, . . . , 2/n) = (2/n, 2/n, . . . , 2/n) (the
number of coordinates of these points should be clear from context), the
sets φj,1(G

′
j−1) and φj,3((G

′
j−1∩ [0, 2/n]j)−Lj) have the point (2/n, . . . ,

2/n) in common. (Each point of Lj has at least one coordinate 0, so
(2/n, . . . , 2/n) /∈ Lj .) The point φj,2(0, 0, . . . , 0) = φj,3(0, 0, . . . , 0) =
(0, 0, . . . , 0, 1/n) is common to φj,2(G

′
j−1 ∩ ([0, 1]j−1 × [0, 1 − 1/n])) and

φj,3((G
′
j−1 ∩ [0, 2/n]j)− Lj). (The last coordinate of each point of Lj is

2/n, so (0, 0, . . . , 0, 1/n) /∈ Lj .) It follows that G′
j is connected.

To complete the inductive proof, we need to show that if j < n − 1,
then G′

j ∩ [0, 1]j × [0, 1− 1/n] and G′
j ∩ [0, 2/n]j+1 −Lj+1 are connected.

First, we show that if j < n − 1, then G′
j ∩ [0, 1]j × [0, 1 − 1/n] is

connected. There are 2j arcs in the collection Aj+1 = {α ⊆ G′
j | α is an

arc and πj+1(α) = [1 − 1/n, 1]}. This is shown by yet another inductive
argument that relies on observing that for 1 ≤ i < n − 1, the set G′

i has
2i−1 such arcs arising from φi,1(G

′
i−1) and 2i−1 additional ones arising

from φi,2(G
′
i−1 ∩ ([0, 1]i−1× [0, 1− 1/n])). We omit the rest of this detail.

Thus, if α ∈ Aj+1, then one end point of α has 1 as its last coordinate
and G′

j − α is connected. It follows that G′
j ∩ ([0, 1]j × [0, 1 − 1/n]) is

connected, being the closure of the complement in G′
j of the union of all

of the arcs in Aj+1.
Lastly, we show that if j < n − 1, then G′

j ∩ [0, 2/n]j+1 − Lj+1 is
connected. This results from the fact that G′

j ∩ [0, 2/n]j+1 = φj,1(G
′
j−1 ∩

[0, 2/n]j) ∪ φj,3(G
′
j−1 ∩ [0, 2/n]j) ∪ φj,2(G

′
j−1 ∩ [0, 1/n]j). Because

φj,1(G
′
j−1 ∩ [0, 2/n]j) and φj,3(G

′
j−1 ∩ [0, 2/n]j) are connected with

(2/n, 2/n, . . . , 2/n) in common, their union is connected. The set
φj,2(G

′
j−1 ∩ [0, 1/n]j) = φj,2(Dj ∪ Kj) = φj,2(Dj) ∪ Lj+1. The set

φj,2(Dj) is a connected subset of G′
j ∩ [0, 2/n]j+1 containing the point

(0, 0, . . . , 0, 1/n) in common with φj,3(G
′
j−1 ∩ [0, 2/n]j).

This completes the inductive proof, and the connectedness of G′
k for

1 ≤ k ≤ n− 1 is now established. The set G′
n is not connected because it

contains (0, 1/n, 2/n, . . . , 1) as an isolated point. �
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