INVERSE LIMIT REPRESENTATIONS OF NON-PLANAR TREE-LIKE CONTINUA

W. T. INGRAM

Abstract

In this paper we present a collection of non-planar tree-like continua with the property that if n is a positive integer there is a continuum in the collection such that the first n stages of a construction of the continuum can be carried out in the plane. Each continuum in the collection is obtained as an inverse limit on a single planar tree with a single bonding map.

1. Introduction

Drawing pictures of bonding maps in inverse limit sequences when the factor spaces are not arcs presents a challenge. Even if all of the factor spaces are as elementary as a simple triod, the Cartesian product containing the graph of the bonding map does not embed in Euclidean three dimesional space. Fortunately, one can obtain a schematic picture of the bonding map that gives information not only about the mapping but also about the inverse limit. Over the years, the author has made extensive use of a simple scheme to assist in analyzing the resulting inverse limit. One advantage of this scheme is that it is closely tied to chaining (linear, tree, circular, etc.) of the inverse limit and the patterns the chains follow one in the other as well as the construction of continua in Euclidean spaces homeomorphic to the inverse limit. We carefully describe this scheme in section 2.

In this paper we present a collection of non-planar tree-like continua each of which is obtained as an inverse limit on a single planar tree with a single bonding map. The collection has the property that if n is a positive integer there is a continuum in the collection such that the first n stages of a construction of a homeomorphic copy of the continuum can be carried out in the plane. The "cause" of this phenomenon appears to lie in the different embeddings of the domain tree and the "fattened" range in our schematics. Informally, we describe this phenomenon as being able to draw the first n stages of a construction of the continuum in the plane even though the continuum cannot be embedded in the plane. First we give some basic definitions.

[^0]By a continuum we mean a compact, connected subset of a metric space. If $X_{1}, X_{2}, X_{3}, \ldots$ is a sequence of continua and $f_{1}, f_{2}, f_{3}, \ldots$ is a sequence of mappings such that $f_{i}: X_{i+1} \rightarrow X_{i}$, the inverse limit of the inverse sequence $\left\{X_{i}, f_{i}\right\}$ is the subset of the product $\prod_{i>0} X_{i}$ containing the point $\left(x_{1}, x_{2}, x_{3}, \ldots\right)$ if and only if $f_{i}\left(x_{i+1}\right)=x_{i}$.
The inverse limit of this inverse limit sequence is denoted $\lim \left\{X_{i}, f_{i}\right\}$. The continua X_{i} will be called factor spaces and the mappings f_{i} bonding maps of the inverse limit sequence. If X is a continuum and $f: X \rightarrow X$ is a mapping, by $\lim _{\leftrightarrows}\{X, f\}$ we mean the inverse limit of the inverse sequence $\left\{X_{i}, f_{i}\right\}$ where, for each $i, X_{i}=X$ and $f_{i}=f$. We denote by π_{i} the projection of the inverse limit into the i th factor space X_{i}. A ray is a topological image of $[0,1)$. If M is a continuum that is the union of a ray R and a continuum K such that $M=\bar{R}$ and $\bar{R}-R=K$, we call K the remainder of R in M. We use the notation $f: X \rightarrow Y$ to denote that f is a mapping of X onto Y.

2. An Example

In this section we describe a plane continuum consisting of a ray with a simple triod as remainder and give two inverse limit representations of this continuum (see Figure 1). This construction is carried out in rather full detail for the benefit of the reader who is not familiar with such constructions. A more experienced reader will likely take note of our geometric description of the continuum and its two inverse limit representations and move on to the final section of the article. The continuum that we shall denote by M is constructed in the plane as follows. Let H denote the simple triod that is the union of three arcs J_{1}, J_{2} and J_{3} lying on the coordinate axes each having the origin as one end point. The other end point of J_{1} is the point $(1,0)$, the other end point of J_{2} is $(0,1)$ and the other end point of J_{3} is $(-1,0)$. Denote by P_{0} the point $(0,-2)$ and by P_{i} the point $(0,-1 / i)$ for $i=1,2,3, \ldots$. Further, let $Q_{i}=(1+1 / i, 0), R_{i}=(1 / i, 1 / i), S_{i}=(0,1+1 / i), T_{i}=(-1 / i, 1 / i)$ and $U_{i}=(-1-1 / i, 0)$ for $i=1,2,3, \ldots$. If P and Q are points in the plane, we denote by $P Q$ the straight line interval joining P and Q. Let $I_{0}, I_{1}, I_{2}, \ldots$ be a sequence of straight line intervals such that $I_{0}=P_{0} P_{1}$ and, for $j \geq 0$, let $I_{6 j+1}=P_{j+1} Q_{j+1}$, $I_{6 j+2}=Q_{j+1} R_{j+1}, I_{6 j+3}=R_{j+1} S_{j+1}, I_{6 j+4}=S_{j+1} T_{j+1}, I_{6 j+5}=T_{j+1} U_{j+1}$ and $I_{6 j+6}=U_{j+1} P_{j+2}$. Then, M is the union of J_{1}, J_{2} and J_{3} and the ray that is the union of $I_{0}, I_{1}, I_{2}, \ldots$.

Figure 1.
We now describe an inverse limit sequence whose inverse limit is M. Let X denote a simple 4 -od in the plane that is the union of four unit intervals intersecting at the origin and lying on the coordinate axes. We shall use the following labeling of X : denote the origin by O and let $A=(1,0), B=(0,1), C=(-1,0)$ and $D=(0,-1)$. Then $X=O A \cup O B \cup O C \cup O D$. If $P=(x, y)$ is a point in the plane and t is a real number, we denote the point $(t x, t y)$ by $t P$. Let $f: X \rightarrow X$ be given by $f(t P)=t P$ for $0 \leq t \leq 1$ and P in $\{A, B, C\}$ while

$$
f(t D)= \begin{cases}7 t C & \text { if } 0 \leq t \leq 1 / 7 \\ (-7 t+2) C & \text { if } 1 / 7 \leq t \leq 2 / 7 \\ (7 t-2) B & \text { if } 2 / 7 \leq t \leq 3 / 7 \\ (-7 t+4) B & \text { if } 3 / 7 \leq t \leq 4 / 7 \\ (7 t-4) A & \text { if } 4 / 7 \leq t \leq 5 / 7 \\ (-7 t+6) A & \text { if } 5 / 7 \leq t \leq 6 / 7 \\ (7 t-6) D & \text { if } 6 / 7 \leq t \leq 1\end{cases}
$$

Figure 2.

Our schematic representation of f is shown in Figure 2. In the schematic, the range 4-od is drawn "fattened" into a disk with four arms. The domain 4-od is drawn "folded" inside the disk. Since f is the identity on $O A \cup O B \cup O C$ this triod is simply drawn inside the corresponding arms of the disk. The arm $O D$ is thrown over all of X in the following way: first break $O D$ into seven subintervals of equal length, then map the first two subintervals out $O C$ and back, the second two out $O B$ and back, the third two out $O A$ and back and the seventh subinterval out $O D$. That $(6 / 7) D$ is mapped to O is indicated by the $6 D / 7$ mark on the folded 4 -od. Marking the other points of the subdivision of $O D$ in the picture would only serve to clutter the picture, but, for example, $5 D / 7$ could be marked along the vertical segment $O D$ of the folded 4 -od lying in the A-arm of the disk. The short vertical and horizontal intervals are present in the schematic only for minor technical convenience in the drawing and may be more or less ignored and could have been drawn as sharp reversals had we so wished.

It is not difficult to see that $\lim \{X, f\}$ is homeomorphic to the continuum M of Figure 1. One way to see this would be to use a chaining construction to build a homeomorphism between the continua. However, we shall indicate another means to construct a homeomorphism. Let α_{0} be the inverse limit of the inverse sequence with factors $O D,(6 D / 7) D, \ldots$ and bonding maps restrictions of f to the designated factor space. Since the second factor lies in $O D$ all subsequent factors are automatically determined and lie in $O D$. In each of the inverse sequences described below, once a factor is chosen to lie in $O D$, the subsequent factors are similarly all determined for
the same reason. As well, it should be understood that we restrict the bonding map f to the appropriate factor space in each of these inverse sequences. Suppose j is a non-negative integer. Let $\alpha_{6 j+1}$ be the arc that is the inverse limit of the sequence having $O A$ as its first $j+1$ factors and then $(5 D / 7)(6 D / 7)$ as its next factor, \ldots. Let $\alpha_{6 j+2}$ be the inverse limit of the sequence having $O A$ as its first $j+1$ factors and then $(4 D / 7)(5 D / 7)$ as its next factor, \ldots. Let $\alpha_{6 j+3}$ be the inverse limit of the sequence having $O B$ as its first $j+1$ factors and then $(3 D / 7)(4 D / 7), \ldots$. Let $\alpha_{6 j+4}$ be the inverse limit of the sequence having $O B$ as its first $j+1$ factors and then $(2 D / 7)(3 D / 7), \ldots$.. Let $\alpha_{6 j+5}$ be the inverse limit of the sequence having $O C$ as its first $j+1$ factors and then $(D / 7)(2 D / 7), \ldots$.. Finally, let $\alpha_{6 j+6}$ be the inverse limit of the sequence having $O C$ as its first $j+1$ factors and then $O(D / 7), \ldots$.. Let L_{1} be the inverse limit of the sequence having all of its factors $O A, L_{2}$ the inverse limit of the sequence having all of its factors $O B$ and L_{3} the inverse limit of the sequence having all of its factors $O C$. By mapping L_{i} linearly onto J_{i} for $i=1,2,3$ and α_{i} linearly onto I_{i} for $i \geq 0$ (being careful to match the order on the arcs α_{i} and I_{i} in this process) we obtain a homeomorphism of $\lim \{X, f\}$ onto M.

A different representation of the continuum M may be obtained using another mapping of the 4-od. Define $g: X \rightarrow X$ by $g(t A)=t B, g(t B)=t C$ and $g(t C)=t A$ for $0 \leq t \leq 1$ while

$$
g(t D)= \begin{cases}3 t A & \text { if } 0 \leq t \leq 1 / 3 \\ (-3 t+2) A & \text { if } 1 / 3 \leq t \leq 2 / 3 \\ (3 t-2) D & \text { if } 2 / 3 \leq t \leq 1\end{cases}
$$

Figure 3.

A schematic representation of g is shown in Figure 3. As before the range 4-od is drawn "fattened" into a disk with four arms and the domain 4-od is drawn "folded" inside this disk. The rotation on the triod $O A \cup O B \cup O C$ is represented by its labeling inside the disk with four arms. The leg $O D$ of X is broken into thirds with the first two thrown over $O C$ and back while the final third is thrown over $O D$. That $(2 / 3) D$ is mapped to O is indicated by the $2 D / 3$ placed at the final turn in the D-leg of the domain 4-od.

One advantage to our schematic system arises in drawing compositions. To see $g^{2}=g \circ g$, we "fatten" the the folded 4-od into a disk with four arms (drawn inside the original "fattened" disk) and then draw the domain 4-od of g^{2} inside this disk. By subsequently erasing the intermediate disk, one arrives at a picture of g^{2}. The two steps of this process are shown in Figures 4 and 5.

Figure 4.

Figure 5.

Finally, in a similar manner we obtain a schematic of g^{3} (see Figure 6). One cannot help noticing the similarity between the schematic for g^{3} and that for f. Indeed, the two inverse limits $\lim \left\{X, f^{3}\right\}$ and $\lim \{X, g\}$ are homeomorphic. One way to see this is as follows. Denote by $h:[0,1] \rightarrow[0,1]$ the piecewise linear homeomorphism whose graph consists of three straight line intervals joining $(0,0)$ and $(2 / 7,2 / 3),(2 / 7,2 / 3)$ and $(4 / 7,8 / 9)$, and $(4 / 7,8 / 9)$ and (1, 1), respectively. Let $h_{1}=h$ and for $n \geq 1$ let

$$
h_{n+1}(t)= \begin{cases}h_{n}(t) & \text { if } 0 \leq t \leq 6 / 7 \\ (1 / 27) h_{n}(7 t-6)+26 / 27 & \text { if } 6 / 7 \leq t \leq 1\end{cases}
$$

Figure 6.
Let $\phi_{1}: X \rightarrow X$ be the identity on X and, for $i \geq 2$, let $\phi_{i}: X \rightarrow X$ be given by

$$
\phi_{i}(t P)= \begin{cases}t P & \text { for } P \operatorname{in}\{A, B, C\} \\ h_{i-1}(t) D & \text { for } P=D\end{cases}
$$

where $0 \leq t \leq 1$. Then, $\phi_{n} \circ f=g^{3} \circ \phi_{n+1}$ for $n=1,2,3, \ldots$ so the sequence of homeomorphisms $\phi_{1}, \phi_{2}, \phi_{3}, \ldots$ induces a homeomorphism from $\underset{\leftrightarrows}{\lim }\{X, f\}$ onto $\lim \left\{X, g^{3}\right\},[3$, Theorem 5.2]. Since by the subsequence theorem [2, Corollary 1.7.1, p. 11] $\underset{\leftrightarrows}{\lim }\left\{X, g^{3}\right\}$ and $\underset{\rightleftarrows}{\lim }\{X, g\}$ are homeomorphic we have that $\underset{\leftrightarrows}{\leftrightarrows}\{X, f\}$ and $\underset{\rightleftarrows}{\lim }\{X, g\}$ are homeomorphic.

3. The collection of continua

R H Bing observed that if an arc having O as an endpoint is attached to the continuum M (shown in Figure 1) so that O is the only point common to this arc and M, the
resulting continuum cannot be embedded in the plane [1, Example 1, pp. 654-55]. Such a continuum may be constructed as an inverse limit in the following way:

Let $E_{1}, E_{2}, E_{3}, E_{4}$ and E_{5} be five evenly spaced points on the unit circle in the plane numbered counter-clockwise with $E_{1}=(1,0)$. Let X denote the 5-od, $O E_{1} \cup O E_{2} \cup O E_{3}, \cup O E_{4} \cup O E_{5}$. Let f be the map of X onto itself that simply rotates $O E_{1}$ onto $O E_{2}, O E_{2}$ onto $O E_{3}$, and $O E_{3}$ onto $O E_{1}$, while f is the identity on $O E_{4}$. To define f on $O E_{5}$ we subdivide this interval into thirds. Then, f maps $O E_{5}$ linearly out $O E_{1}$ and back on the first two subintervals and then out $O E_{5}$ on the final one. A schematic representation of f is shown in Figure 7. Note that it is easy to draw schematics of f, f^{2} and f^{3} in the plane (a schematic for f^{3} is shown in Figure 8) even though $\lim \{X, f\}$ is a non-planar continuum.

Figure 7.

Figure 8.

We now describe the collection of examples. Each example is a simple adaptation of the example we just described. Let n be a positive integer, $n \geq 3$. Let $E_{1}, E_{2}, \ldots, E_{n+2}$ be $n+2$ evenly spaced points on the unit circle in the plane numbered counter-clockwise with $E_{1}=(1,0)$. Let X be the $(n+2)$-od, $O E_{1} \cup O E_{2} \cup \ldots O E_{n+2}$. Let f be the map of X onto itself that simply rotates $O E_{i}$ onto $O E_{i+1}$ for $1 \leq i \leq n-1$ and $O E_{n}$ onto $O E_{1}$, while f is the identity on $O E_{n+1}$. To define f on $O E_{n+2}$ we subdivide this interval into thirds. Then, f maps $O E_{n+2}$ linearly out $O E_{1}$ and back on the first two subintervals and then out $O E_{n+2}$ on the final one. Then $\lim _{\leftrightarrows}\{X, f\}$ is a non-planar continuum that is the union of an $\operatorname{arc} \alpha=\lim _{\longleftarrow}\left\{O E_{n+1}, f \mid O E_{n+1}\right.$ and a ray with remainder the n-od that results from the inverse limit on the $n-\operatorname{od} O E_{1} \cup O E_{2} \cup \ldots \cup O E_{n}$ using the restriction of f. The arc α and the continuum that is the union of the ray and this n-od intersect only at (O, O, O, \ldots). It is possible to draw schematics of f, f^{2}, \ldots, f^{n} in the plane even though $\underset{\leftrightarrows}{\lim }\{X, f\}$ is a non-planar continuum.

References

1. R. H. Bing, Snake-like continua, Duke Math. J. 18 (1951), 653-663.
2. W. T. Ingram, "Inverse Limits", Aportaciones Matemáticas: Investigación [Mathematical Contributions: Research] 15, México: Sociedad Matemática Mexicana, 2000.
3. W. T. Ingram and William S. Mahavier, Inverse limits of upper semi-continuous set-valued functions, Houston J. Math. 32 (2006), 119-129.

Department of Mathematics and Statistics, University of Missouri-Rolla, Rolla, MO 65409-0020

E-mail address: ingram@umr.edu

[^0]: 2000 Mathematics Subject Classification. Primary 54H20, 54F15.
 Key words and phrases. inverse limit, non-planar.

