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Abstract. In this paper we present a collection of non-planar tree-like continua

with the property that if n is a positive integer there is a continuum in the collection

such that the first n stages of a construction of the continuum can be carried out in

the plane. Each continuum in the collection is obtained as an inverse limit on a single

planar tree with a single bonding map.

1. Introduction

Drawing pictures of bondingmaps in inverse limit sequences when the factor spaces

are not arcs presents a challenge. Even if all of the factor spaces are as elementary as a

simple triod, the Cartesian product containing the graph of the bonding map does not

embed in Euclidean three dimesional space. Fortunately, one can obtain a schematic

picture of the bonding map that gives information not only about the mapping but also

about the inverse limit. Over the years, the author has made extensive use of a simple

scheme to assist in analyzing the resulting inverse limit. One advantage of this scheme

is that it is closely tied to chaining (linear, tree, circular, etc.) of the inverse limit and

the patterns the chains follow one in the other as well as the construction of continua

in Euclidean spaces homeomorphic to the inverse limit. We carefully describe this

scheme in section 2.

In this paper we present a collection of non-planar tree-like continua each of which

is obtained as an inverse limit on a single planar tree with a single bonding map. The

collection has the property that if n is a positive integer there is a continuum in the

collection such that the first n stages of a construction of a homeomorphic copy of the

continuum can be carried out in the plane. The “cause” of this phenomenon appears

to lie in the different embeddings of the domain tree and the “fattened” range in our

schematics. Informally, we describe this phenomenon as being able to draw the first

n stages of a construction of the continuum in the plane even though the continuum

cannot be embedded in the plane. First we give some basic definitions.

2000 Mathematics Subject Classification. Primary 54H20, 54F15.

Key words and phrases. inverse limit, non-planar.

1



2 W. T. INGRAM

By a continuum we mean a compact, connected subset of a metric space. If

X1, X2, X3, . . . is a sequence of continua and f1, f2, f3, . . . is a sequence of mappings

such that fi : Xi+1 → Xi, the inverse limit of the inverse sequence {Xi, fi} is the subset

of the product
∏

i>0

Xi containing the point (x1, x2, x3, . . .) if and only if fi(xi+1) = xi.

The inverse limit of this inverse limit sequence is denoted lim
←−
{Xi, fi}. The continua

Xi will be called factor spaces and the mappings fi bonding maps of the inverse limit

sequence. If X is a continuum and f : X → X is a mapping, by lim
←−
{X, f} we mean

the inverse limit of the inverse sequence{Xi, fi}where, for each i, Xi = X and fi = f .

We denote by πi the projection of the inverse limit into the ith factor space Xi. A ray

is a topological image of [0, 1). If M is a continuum that is the union of a ray R and a

continuum K such that M = R and R− R = K, we call K the remainder of R in M.

We use the notation f : X→→ Y to denote that f is a mapping of X onto Y .

2. An Example

In this section we describe a plane continuum consisting of a ray with a simple

triod as remainder and give two inverse limit representations of this continuum (see

Figure 1). This construction is carried out in rather full detail for the benefit of the

reader who is not familiar with such constructions. A more experienced reader will

likely take note of our geometric description of the continuum and its two inverse

limit representations and move on to the final section of the article. The continuum

that we shall denote by M is constructed in the plane as follows. Let H denote

the simple triod that is the union of three arcs J1, J2 and J3 lying on the coordinate

axes each having the origin as one end point. The other end point of J1 is the point

(1, 0), the other end point of J2 is (0, 1) and the other end point of J3 is (−1, 0).

Denote by P0 the point (0,−2) and by Pi the point (0,−1/i) for i = 1, 2, 3, . . ..
Further, let Qi = (1 + 1/i, 0), Ri = (1/i, 1/i), Si = (0, 1 + 1/i), Ti = (−1/i, 1/i) and

Ui = (−1− 1/i, 0) for i = 1, 2, 3, . . .. If P and Q are points in the plane, we denote

by PQ the straight line interval joining P and Q. Let I0, I1, I2, . . . be a sequence of

straight line intervals such that I0 = P0P1 and, for j ≥ 0, let I6j+1 = Pj+1Qj+1,

I6j+2 = Qj+1Rj+1, I6j+3 = Rj+1Sj+1, I6j+4 = Sj+1Tj+1, I6j+5 = Tj+1Uj+1 and

I6j+6 = Uj+1Pj+2. Then, M is the union of J1, J2 and J3 and the ray that is the union

of I0, I1, I2, . . ..
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Figure 1.

We now describe an inverse limit sequence whose inverse limit is M. Let X denote

a simple 4-od in the plane that is the union of four unit intervals intersecting at the

origin and lying on the coordinate axes. We shall use the following labeling of X:

denote the origin by O and let A = (1, 0), B = (0, 1), C = (−1, 0) and D = (0,−1).

Then X = OA ∪OB ∪OC ∪OD. If P = (x, y) is a point in the plane and t is a real

number, we denote the point (tx, ty) by tP . Let f : X →→ X be given by f (tP) = tP
for 0 ≤ t ≤ 1 and P in {A, B, C} while

f (tD) =







































7tC if 0 ≤ t ≤ 1/7

(−7t + 2)C if 1/7 ≤ t ≤ 2/7

(7t − 2)B if 2/7 ≤ t ≤ 3/7

(−7t + 4)B if 3/7 ≤ t ≤ 4/7

(7t − 4)A if 4/7 ≤ t ≤ 5/7

(−7t + 6)A if 5/7 ≤ t ≤ 6/7

(7t − 6)D if 6/7 ≤ t ≤ 1
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Our schematic representation of f is shown in Figure 2. In the schematic, the

range 4-od is drawn “fattened” into a disk with four arms. The domain 4-od is drawn

“folded” inside the disk. Since f is the identity on OA∪OB∪OC this triod is simply

drawn inside the corresponding arms of the disk. The arm OD is thrown over all of X
in the following way: first break OD into seven subintervals of equal length, then map

the first two subintervals out OC and back, the second two out OB and back, the third

two out OA and back and the seventh subinterval out OD. That (6/7)D is mapped

to O is indicated by the 6D/7 mark on the folded 4-od. Marking the other points of

the subdivision of OD in the picture would only serve to clutter the picture, but, for

example, 5D/7 could be marked along the vertical segment OD of the folded 4-od

lying in the A-arm of the disk. The short vertical and horizontal intervals are present

in the schematic only for minor technical convenience in the drawing and may be more

or less ignored and could have been drawn as sharp reversals had we so wished.

It is not difficult to see that lim
←−
{X, f} is homeomorphic to the continuum M of

Figure 1. One way to see this would be to use a chaining construction to build a

homeomorphism between the continua. However, we shall indicate another means to

construct a homeomorphism. Let α0 be the inverse limit of the inverse sequence with

factors OD, (6D/7)D, . . . and bonding maps restrictions of f to the designated factor

space. Since the second factor lies in OD all subsequent factors are automatically

determined and lie in OD. In each of the inverse sequences described below, once a

factor is chosen to lie in OD, the subsequent factors are similarly all determined for
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the same reason. As well, it should be understood that we restrict the bonding map

f to the appropriate factor space in each of these inverse sequences. Suppose j is

a non-negative integer. Let α6j+1 be the arc that is the inverse limit of the sequence

having OA as its first j + 1 factors and then (5D/7)(6D/7) as its next factor, . . .. Let

α6j+2 be the inverse limit of the sequence having OA as its first j + 1 factors and then

(4D/7)(5D/7) as its next factor, . . .. Let α6j+3 be the inverse limit of the sequence

having OB as its first j+1 factors and then (3D/7)(4D/7), . . .. Let α6j+4 be the inverse

limit of the sequence having OB as its first j + 1 factors and then (2D/7)(3D/7), . . ..
Let α6j+5 be the inverse limit of the sequence having OC as its first j + 1 factors and

then (D/7)(2D/7), . . .. Finally, let α6j+6 be the inverse limit of the sequence having

OC as its first j + 1 factors and then O(D/7), . . .. Let L1 be the inverse limit of the

sequence having all of its factors OA, L2 the inverse limit of the sequence having

all of its factors OB and L3 the inverse limit of the sequence having all of its factors

OC. By mapping Li linearly onto Ji for i = 1, 2, 3 and αi linearly onto Ii for i ≥ 0

(being careful to match the order on the arcs αi and Ii in this process) we obtain a

homeomorphism of lim
←−
{X, f} onto M.

A different representation of the continuum M may be obtained using another

mapping of the 4-od. Define g : X→→ X by g(tA) = tB, g(tB) = tC and g(tC) = tA
for 0 ≤ t ≤ 1 while

g(tD) =







3tA if 0 ≤ t ≤ 1/3

(−3t + 2)A if 1/3 ≤ t ≤ 2/3

(3t − 2)D if 2/3 ≤ t ≤ 1

B

C

D

A
B

D

A

C
O

O

2D/3

Figure 3.
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A schematic representation of g is shown in Figure 3. As before the range 4-od is

drawn “fattened” into a disk with four arms and the domain 4-od is drawn “folded”

inside this disk. The rotation on the triod OA∪OB∪OC is represented by its labeling

inside the disk with four arms. The leg OD of X is broken into thirds with the first

two thrown over OC and back while the final third is thrown over OD. That (2/3)D
is mapped to O is indicated by the 2D/3 placed at the final turn in the D-leg of the

domain 4-od.

One advantage to our schematic system arises in drawing compositions. To see

g2 = g ◦ g, we “fatten” the the folded 4-od into a disk with four arms (drawn inside

the original “fattened” disk) and then draw the domain 4-od of g2 inside this disk. By

subsequently erasing the intermediate disk, one arrives at a picture of g2. The two

steps of this process are shown in Figures 4 and 5.
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Finally, in a similar manner we obtain a schematic of g3 (see Figure 6). One cannot

help noticing the similarity between the schematic for g3 and that for f . Indeed, the

two inverse limits lim
←−
{X, f 3} and lim

←−
{X, g} are homeomorphic. One way to see this is

as follows. Denote by h : [0, 1]→→ [0, 1] the piecewise linear homeomorphism whose

graph consists of three straight line intervals joining (0, 0) and (2/7, 2/3), (2/7, 2/3)

and (4/7, 8/9), and (4/7, 8/9) and (1, 1), respectively. Let h1 = h and for n ≥ 1 let

hn+1(t) =

{

hn(t) if 0 ≤ t ≤ 6/7

(1/27)hn(7t − 6) + 26/27 if 6/7 ≤ t ≤ 1
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Figure 6.

Let φ1 : X→ X be the identity on X and, for i ≥ 2, let φi : X→→ X be given by

φi(tP) =

{

tP for P in {A, B, C}
hi−1(t)D for P = D

where 0 ≤ t ≤ 1. Then, φn ◦ f = g3 ◦ φn+1 for n = 1, 2, 3, . . . so the sequence

of homeomorphisms φ1, φ2, φ3, . . . induces a homeomorphism from lim
←−
{X, f} onto

lim
←−
{X, g3}, [3, Theorem 5.2]. Since by the subsequence theorem [2, Corollary 1.7.1,

p. 11] lim
←−
{X, g3} and lim

←−
{X, g} are homeomorphic we have that lim

←−
{X, f} and

lim
←−
{X, g} are homeomorphic.

3. The collection of continua

R H Bing observed that if an arc having O as an endpoint is attached to the continuum

M (shown in Figure 1) so that O is the only point common to this arc and M, the
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resulting continuum cannot be embedded in the plane [1, Example 1, pp. 654–55].

Such a continuum may be constructed as an inverse limit in the following way:

Let E1, E2, E3, E4 and E5 be five evenly spaced points on the unit circle in

the plane numbered counter-clockwise with E1 = (1, 0). Let X denote the 5-od,

OE1 ∪ OE2 ∪ OE3,∪OE4 ∪ OE5. Let f be the map of X onto itself that simply

rotates OE1 onto OE2, OE2 onto OE3, and OE3 onto OE1, while f is the identity

on OE4. To define f on OE5 we subdivide this interval into thirds. Then, f maps

OE5 linearly out OE1 and back on the first two subintervals and then out OE5 on the

final one. A schematic representation of f is shown in Figure 7. Note that it is easy to

draw schematics of f, f 2 and f 3 in the plane (a schematic for f 3 is shown in Figure

8) even though lim
←−
{X, f} is a non-planar continuum.
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We now describe the collection of examples. Each example is a simple adaptation of

the example we just described. Let n be a positive integer, n ≥ 3. Let E1, E2, . . . , En+2

be n+2 evenly spaced points on the unit circle in the plane numberedcounter-clockwise

with E1 = (1, 0). Let X be the (n+2)-od, OE1∪OE2∪. . . OEn+2. Let f be the map of

X onto itself that simply rotates OEi onto OEi+1 for 1 ≤ i ≤ n−1 and OEn onto OE1,

while f is the identity on OEn+1. To define f on OEn+2 we subdivide this interval into

thirds. Then, f maps OEn+2 linearly out OE1 and back on the first two subintervals

and then out OEn+2 on the final one. Then lim
←−
{X, f} is a non-planar continuum that is

the union of an arc α = lim
←−
{OEn+1, f |OEn+1 and a ray with remainder the n-od that

results from the inverse limit on the n-od OE1∪OE2∪ . . .∪OEn using the restriction

of f . The arc α and the continuum that is the union of the ray and this n-od intersect

only at (O, O, O, . . .). It is possible to draw schematics of f, f 2, . . . , f n in the plane

even though lim
←−
{X, f} is a non-planar continuum.
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