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INVERSE LIMITS WITH UPPER

SEMI-CONTINUOUS BONDING FUNCTIONS:

PROBLEMS AND SOME PARTIAL SOLUTIONS

W. T. INGRAM

Abstract. By means of numerous examples we call atten-
tion to several problems in the theory of inverse limits with
upper semi-continuous bonding functions. Along with the
problems we present a few partial solutions. Most of the prob-
lems we discuss arise from the failure of certain theorems from
the theory of inverse limits with mappings to carry over to the
setting of inverse limits with set-valued functions.

1. Introduction

Many of the tools employed by researchers in inverse limits with
mappings simply do not carry over to inverse limits with upper
semi-continuous bonding functions. Although this can be frus-
trating to an experienced researcher in ordinary inverse limits, it
presents a golden opportunity for research. In this article we shall
explore a number of these areas by surveying some of these differ-
ences and posing several questions. For some of the questions, we
present partial solutions, but our main emphasis will be on exam-
ples illustrating where the tools fail and on posing questions for
further exploration. In general there are two kinds of solutions we
think would be of interest. One would be a solution in terms of the
bonding functions giving the potential users of the results the most
obvious access to their use. The other sort of solution is one for
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354 W. T. INGRAM

which the corresponding result for inverse limits with mappings is
a corollary. Ideally, a solution would satisfy both of these criteria.

If 𝑌 is a compact Hausdorff space, we denote the collection of
closed subsets of 𝑌 by 2𝑌 and the collection of closed and connected
subsets of 𝑌 by 𝐶(𝑌 ). If each of 𝑋 and 𝑌 is a compact Hausdorff
space, a function 𝑓 : 𝑋 → 2𝑌 is said to be upper semi-continuous
at the point 𝑥 of 𝑋 provided if 𝑉 is an open set in 𝑌 that contains
𝑓(𝑥), then there is an open set 𝑈 ⊆ 𝑋 containing 𝑥 such that if 𝑡 is
a point of 𝑈 , then 𝑓(𝑡) ⊆ 𝑉 . A function 𝑓 : 𝑋 → 2𝑌 is called upper
semi-continuous provided it is upper semi-continuous at each point
of 𝑋. If 𝑓 : 𝑋 → 2𝑌 is a set-valued function, we shall say that 𝑓
is surjective provided for each 𝑦 ∈ 𝑌 there is a point 𝑥 ∈ 𝑋 such
that 𝑦 ∈ 𝑓(𝑥). If 𝑓 : 𝑋 → 2𝑌 is a set-valued function, by the graph
of 𝑓 , denoted 𝐺(𝑓), we mean the subset of 𝑋 × 𝑌 that contains
the point (𝑥, 𝑦) if and only if 𝑦 ∈ 𝑓(𝑥). It is known that if 𝑀 is a
subset of 𝑋 × 𝑌 such that 𝑋 is the projection of 𝑀 to its set of
first coordinates, then 𝑀 is closed if and only if 𝑀 is the graph of
an upper semi-continuous function, [4, Theorem 2.1].

Suppose𝑋1, 𝑋2, 𝑋3, . . . is a sequence of compact Hausdorff spaces
and 𝑓1, 𝑓2, 𝑓3, . . . is a sequence of upper semi-continuous functions
such that 𝑓𝑖 : 𝑋𝑖+1 → 2𝑋𝑖 for each positive integer 𝑖. By the in-
verse limit of the sequence 𝑓1, 𝑓2, 𝑓3, . . . , denoted lim←−𝒇 , we mean

the subset of
∏

𝑖>0𝑋𝑖 that contains the point (𝑥1, 𝑥2, 𝑥3, . . . ) if
and only if 𝑥𝑖 ∈ 𝑓𝑖(𝑥𝑖+1) for each positive integer 𝑖. (Throughout
this paper we shall denote sequences with boldface type and the
terms of sequences in italic type.) The pair of sequences {𝑋𝑖, 𝑓𝑖}
is called an inverse limit sequence, the spaces 𝑋𝑖 factor spaces and
the functions 𝑓𝑖 bonding functions. If each 𝑋𝑖 is the compact Haus-
dorff space 𝑋 and each 𝑓𝑖 is the upper semi-continuous function
𝑓 : 𝑋 → 2𝑋 (i. e., we have an inverse limit sequence with a single
bonding function), we still denote the inverse limit by lim←−𝒇 . We

shall denote the projection from the inverse limit into the 𝑖𝑡ℎ factor
space by 𝜋𝑖. Inverse limits of compact Hausdorff spaces with upper
semi-continuous bonding functions are non-empty and compact, [4,
Theorem 3.2]. We shall call a compact, connected Hausdorff space
a Hausdorff continuum and we shall use the term continuum to
mean a compact, connected metric space. If 𝑓 : 𝑋 → 𝐶(𝑌 ) is up-
per semi-continuous, we say that 𝑓 is Hausdorff continuum-valued;
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if 𝑌 = [0, 1], we say 𝑓 is interval-valued. In the examples involving
inverse limits of set-valued functions on [0, 1], we shall use 𝒬 to
denote [0, 1]∞ = [0, 1]× [0, 1]× [0, 1]× . . . .

2. Connected inverse limits

Armed with the information that the inverse limit of upper semi-
continuous functions on compact Hausdorff spaces is compact, one
of the first questions someone in continuum theory is likely to ask
about inverse limits with set-valued bonding functions is whether
the inverse limit is connected if the factor spaces are connected.
This turns out not to be the case even if all of the factor spaces
are the interval [0, 1] and there is a single bonding function having
a connected graph, see [4, Example 1, p. 126]. We include this ex-
ample without proof. However, later we shall provide another such
example, see Example 2.8, for which our proof that it is not con-
nected is virtually identical to the proof given in [4] that Example
2.1 is not connected.

Example 2.1. Let 𝑓 : [0, 1] → 2[0,1] be the function whose graph
consists of four straight line intervals, one from (1/4,1/4) to (0,0),
one from (0,0) to (1,0), one from (1,0) to (1,1), and one from (1,1) to
(3/4,1/4). The graph of 𝑓 is connected and lim←−𝒇 is not connected.

(See Figure 1 for the graph of 𝑓 .)

Sufficient conditions that inverse limits of upper semi-continuous
functions on Hausdorff spaces be connected are given in Theorem
4.7 and Theorem 4.8 of [4]. Recent conversations with Rob Roe re-
minded the author that we are far from understanding when inverse
limits with upper semi-continuous bonding functions are connected.
For functions not satisfying the conditions of the aforementioned
theorems, ad hoc arguments that the inverse limit is connected
have been supplied. In a recent article in Topology Proceedings,
the author did just that showing that under certain conditions a
single upper semi-continuous function on a continuum such that the
function is a union of mappings produces a connected inverse limit,
[3, Theorem 3.3 and Theorem 4.2]. Examples 2.6 and 2.7 given
below also require arguments tailored to the examples since the
graphs of the bonding functions do not fit the conditions of the
theorems from [4].
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Figure 1. Graph of the bonding function (Example 2.1)

Problem 2.2. Suppose 𝒇 is a sequence of upper semi-continuous
functions on Hausdorff continua. Find necessary and sufficient
conditions (preferably on the bonding functions) such that lim←−𝒇 is
connected.

Problem 2.2 is probably far too general a question to be solved
completely, perhaps for a long time. Asking for such a result in
the metric setting may be as well. Perhaps more tractable is the
following problem for which an answer, even in the case that 𝑋 =
[0, 1], would be of considerable interest.

Problem 2.3. Suppose 𝑋 is a compact metric space and 𝑓 : 𝑋 →
2𝑋 is an upper semi-continuous function. Find sufficient conditions
on 𝑓 such that lim←−𝒇 is connected.

Viewing inverse limits with upper semi-continuous bonding func-
tions as inverse limits with closed subsets of product spaces goes
back to William S. Mahavier’s original article, [6]. At the meeting
of the American Mathematical Society at Baylor in October 2009,
Van Nall announced some sufficient conditions on closed subsets of
product spaces yielding that the inverse limit is connected.
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As mentioned above, in [3] the author showed that an inverse
limit of an upper semi-continuous function on [0, 1] such that the
function is the union of mappings one of which is surjective is con-
nected. Recently, we observed that the function from Example 2.1
is the union of two upper semi-continuous functions such that each
of them has a connected inverse limit. Specifically, it is the union of
the functions from Example 2.6 and Example 2.7. This shows that
the result from [3] does not generalize to the inverse limit of an up-
per semi-continuous function that is the union of surjective upper
semi-continuous functions on [0, 1] each having a connected inverse
limit. In the proofs that the functions in Example 2.6 and Example
2.7 produce continua, we make use of the following observation. Its
proof is left to the reader.

Theorem 2.4. Suppose 𝑋 is a compact Hausdorff space and 𝑓 :
𝑋 → 2𝑋 is an upper semi-continuous function. If 𝑌 is a closed
subset of 𝑋 and 𝑔 : 𝑌 → 2𝑌 is an upper semi-continuous function
such that 𝐺(𝑔) ⊆ 𝐺(𝑓), then lim←− 𝒈 is a closed subset of lim←−𝒇 .

Although it is not difficult to verify that the inverse limit of the
function in the following example is an arc, we include a proof since
we make use of this arc in some of the examples that follow.

Example 2.5. Let 𝑓 : [0, 1] → 𝐶([0, 1]) be the function whose
graph is the union of two straight line intervals one from (0,0) to
(1,0) and the other from (1,0) to (1,1). Then lim←−𝒇 is an arc. (See
Figure 2 for the graph of 𝑓 . This inverse limit is a subset of the
continuum depicted in Figure 4.)

Proof: Let 𝐴 = lim←−𝒇 and let 𝐴0 = {𝒙 ∈ 𝐴 ∣ 𝑥𝑘 = 1 for

𝑘 > 1} and 𝒑0 = (1, 1, 1, . . . ). For each positive integer 𝑛, let
𝐴𝑛 = {𝒙 ∈ 𝐴 ∣ 𝑥𝑘 = 0 for 1 ≤ 𝑘 ≤ 𝑛 and 𝑥𝑘 = 1 for 𝑘 >
𝑛 + 1} and denote by 𝒑𝒏 the point of 𝐴 such that 𝜋𝑗(𝒑𝒏) = 0 for
1 ≤ 𝑗 ≤ 𝑛 and 𝜋𝑗(𝒑𝒏) = 1 for 𝑗 > 𝑛. Observe that, for each
integer 𝑖 ≥ 0, 𝐴𝑖 is an arc and 𝐴𝑖 ∩ 𝐴𝑖+1 = {𝒑𝒊+1}. Moreover,
𝐴 = (

∪
𝑖≥0𝐴𝑖) ∪ {(0, 0, 0, . . . )}. Since each point of 𝐴 other than

(0, 0, 0, . . . ) and (1, 1, 1, . . . ) separates 𝐴, 𝐴 is an arc. □
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(0,0)

(1,1)

(1,0)

Figure 2. Graph of the bonding function (Example 2.5)

Example 2.6. Let 𝑓1 : [0, 1]→ 2[0,1] be the function whose graph
is the union of three straight line intervals, one from (1/4,1/4) to
(0,0), one from (0,0) to (1,0), and one from (1,0) to (1,1). Then
lim←−𝒇1 is connected. (See Figure 3 for the graph of 𝑓1 and Figure 4

for a picture of this inverse limit.)

Proof: Let 𝑀 = lim←−𝒇1. Let 𝑓 be the function from Example 2.5
and 𝐴 be the arc that is its inverse limit. By Theorem 2.4, 𝐴 ⊆𝑀 .
Let 𝑖 and 𝑗 be integers with 𝑖 ≥ 2 and 0 ≤ 𝑗 < 𝑖 − 1. Let 𝐶𝑖 𝑗 =
{𝒙 ∈ 𝑀 ∣ 𝑥𝑖 ∈ [0, 1/4], 𝑥𝑘 = 𝑥𝑖 for 𝑗 < 𝑘 ≤ 𝑖, 𝑥𝑘 = 1 for 𝑘 > 𝑖 and
if 𝑗 > 0, 𝑥𝑘 = 0 for 1 ≤ 𝑘 ≤ 𝑗}. Let 𝐵0 = {𝒙 ∈ 𝑀 ∣ 𝑥𝑘 ∈ [0, 1/4]
and 𝑥𝑘+1 = 𝑥𝑘 for each positive integer 𝑘} and, for each positive
integer 𝑖, let 𝐵𝑖 = {𝒙 ∈ 𝑀 ∣ 𝑥𝑖+1 ∈ [0, 1/4] and 𝑥𝑘 = 𝑥𝑖+1 for
𝑘 ≥ 𝑖 + 1 and 𝑥𝑘 = 0 for 𝑘 ≤ 𝑖}. Note that 𝐹 =

∪
𝑖≥0𝐵𝑖 is a fan

intersecting 𝐴 at (0, 0, 0, . . . ). Further, if 𝑖 and 𝑗 are integers with
𝑖 ≥ 2 and 0 ≤ 𝑗 < 𝑖−1, then 𝐶𝑖 𝑗 intersects 𝐴 at the point 𝒑𝒊 where
the first 𝑖 coordinates of 𝒑𝒊 are 0 and the remaining coordinates
are 1. To see that 𝑀 is connected, one need only observe that if
𝒙 ∈𝑀 − (𝐴 ∪ 𝐹 ), then 𝒙 is in 𝐶𝑖 𝑗 for some 𝑖 and 𝑗. □
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Figure 3. Graph of the bonding function (Example 2.6)
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Example 2.7. Let 𝑓2 : [0, 1]→ 2[0,1] be the function whose graph
is the union of three straight line intervals, one from (0,0) to (1,0),
one from (1,0) to (1,1), and one from (1,1) to (3/4,1/4). Then
lim←−𝒇2 is connected. (See Figure 5 for a graph of 𝑓2 and Figure 6

for a picture of this inverse limit.)
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Figure 5. Graph of the function (Example 2.7)
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Proof: Let 𝑀 = lim←−𝒇2. Let 𝑓 be the function from Example 2.5
and 𝐴 be the arc that is its inverse limit. By Theorem 2.4, 𝐴 ⊆𝑀 .
Let 𝒑0 be the point (1, 1, 1, . . . ) and, for each positive integer 𝑗,
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let 𝒑𝒋 be the point of 𝑀 whose first 𝑗 coordinates are 0 and all
other coordinates are 1. Each point of the sequence 𝒑0, 𝒑1, 𝒑2, . . .
is a point of 𝐴. For 𝑗 ≥ 0, let 𝐷𝑗 = {𝒙 ∈ 𝑀 ∣ 1/4 ≤ 𝑥𝑗+1 ≤
1, 𝑥𝑘+1 = (𝑥𝑘 + 2)/3 for 𝑘 > 𝑗 and, if 𝑗 > 0, 𝑥𝑘 = 0 for 1 ≤ 𝑘 ≤ 𝑗}.
For each integer 𝑗 ≥ 0 and each integer 𝑖 such that 𝑖 ≥ 𝑗 + 2, let
𝐸𝑖 𝑗 = {𝒙 ∈ 𝑀 ∣ 1/4 ≤ 𝑥𝑗+1 ≤ 1, 𝑥𝑘+1 = (𝑥𝑘 + 2)/3 for 𝑗 + 1 ≤
𝑘 < 𝑖, 𝑥𝑘 = 1 for 𝑘 > 𝑖 and, if 𝑗 > 0, 𝑥𝑘 = 0 for 1 ≤ 𝑘 ≤ 𝑗}. For
each 𝑛 ≥ 0, 𝐹𝑛 = 𝐷𝑛∪ (

∪
𝑘>𝑛+1𝐸𝑘 𝑛) is a fan with vertex 𝒑𝒏. Note

that 𝑀 = 𝐴 ∪ (
∪

𝑛≥0 𝐹𝑛) so 𝑀 is connected. □

Recently, the author considered the question whether an upper
semi-continuous function that is the union of a mapping and an
upper semi-continuous function that has a connected inverse limit
produces a connected inverse limit. We next provide an example
showing that even in this case the inverse limit need not be con-
nected. The proof is essentially identical to the proof of Example
1 in [4], but we include it for the sake of completeness.

Example 2.8. Let 𝑓1 : [0, 1]→ 2[0,1] be the function whose graph
is the union of three straight line intervals, one from (1/4,1/4) to
(0,0), one from (0,0) to (1,0), and one from (1,0) to (1,1). (Note that
𝑓1 is the function from Example 2.6.) Let 𝑔 : [0, 1] → [0, 1] be the
mapping whose graph is the union of three straight line intervals,
one from (0,1) to (3/4,1/4), one from (3/4,1/4) to (7/8,1/2), and

one from (7/8,1/2) to (1,0). Let 𝑓 : [0, 1] → 2[0,1] be the upper
semi-continuous function whose graph is the union of the graphs of
𝑓1 and 𝑔. Then lim←−𝒇 is not connected. (See Figure 7 for the graph

of the bonding function.)

Proof: Let 𝑁 be the set of all points 𝒑 of lim←−𝒇 such that 𝑝1 =

𝑝2 = 1/4 and 𝑝3 = 3/4. Note that 𝑁 is closed. Let 𝑅 = 𝑅1 ×
𝑅2 × 𝑅3 × 𝒬 be the open set where 𝑅1 = 𝑅2 = (1/8, 3/8) and
𝑅3 = (5/8, 7/8) and observe that 𝑁 is a subset of 𝑅. If 𝒚 is a point
of lim←−𝒇 in 𝑅, then 𝑦2 ≤ 1/4 since 𝑦1 ∈ (1/8, 3/8). If 𝑦2 < 1/4 then

𝑦3 > 7/8 and 𝒚 is not in 𝑅. So 𝑦2 = 1/4 and we have 𝑦3 = 3/4,
thus 𝒚 ∈ 𝑁 . Then, 𝑁 and lim←−𝒇 − 𝑁 are mutually separated sets
whose union is lim←−𝒇 . □

We close this section with Theorem 2.12, a generalization of The-
orem 3.2 in [3]. In [8, Theorem 2.4], although his emphasis is on
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Figure 7. Graph of the bonding function (Example 2.8)

the decomposability of the inverse limit, Scott Varagona shows that
under slightly different conditions than those of Theorem 2.13 that
an upper semi-continuous function that is the union of two con-
tinuum valued functions on [0, 1] produces a continuum. If each
of 𝑓 : 𝑋 → 2𝑋 and 𝑔 : 𝑋 → 2𝑋 is an upper semi-continuous
function, we say that 𝑓 and 𝑔 have a coincidence point provided
there is a point 𝑡 of 𝑋 such that 𝑓(𝑡) ∩ 𝑔(𝑡) ∕= ∅. We observe that
two upper semi-continuous interval-valued functions on [0, 1], one of
which is surjective, have a coincidence point; we leave the proof to
the reader. Recall that we use 𝐶(𝑋) to denote the set of connected
elements of 2𝑋 .

Theorem 2.9. Suppose 𝑓 : [0, 1] → 𝐶([0, 1]) is a surjective upper
semi-continuous function and 𝑔 : [0, 1]→ 𝐶([0, 1]) is an upper semi-
continuous function. Then 𝑓 and 𝑔 have a coincidence point.

Lemma 2.10. Suppose 𝑋 is a Hausdorff continuum and 𝑓𝑖 : 𝑋 →
2𝑋 is an upper semi-continuous function for each positive integer 𝑖,
𝑔 : 𝑋 → 2𝑋 is an upper semi-continuous function. Suppose further
that 𝑛 is a positive integer such that 𝑓𝑛 and 𝑔 have a coincidence
point and 𝑓𝑖 is surjective for 𝑖 > 𝑛. If 𝝋 is a sequence of upper
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semi-continuous functions such that 𝜑𝑖 = 𝑓𝑖 for 𝑖 ∕= 𝑛 and 𝜑𝑛 = 𝑔,
then lim←−𝒇 and lim←−𝝋 have a point in common.

Proof: There is a point 𝑡 of 𝑋 such that 𝑓𝑛(𝑡) ∩ 𝑔(𝑡) ∕= ∅. Since
𝑓𝑖 is surjective for each 𝑖 > 𝑛, it is not difficult to see that for
each 𝑦 ∈ 𝑓𝑛(𝑡) there is a point 𝒙 of lim←−𝒇 such that 𝑥𝑛 = 𝑦 and

𝑥𝑛+1 = 𝑡. If 𝑦 ∈ 𝑔(𝑡) ∩ 𝑓𝑛(𝑡), the point 𝒙 of lim←−𝒇 for which 𝑥𝑛 = 𝑦
and 𝑥𝑛+1 = 𝑡 is in lim←−𝝋. □
Definition 2.11. Let ℱ be a collection of upper semi-continuous
functions from a compact Hausdorff space 𝑋 into 2𝑋 . A function
𝑓 : 𝑋 → 2𝑋 is said to be universal with respect to ℱ provided that
for each 𝑔 ∈ ℱ there is a point 𝑡 of 𝑋 such that 𝑓(𝑡) ∩ 𝑔(𝑡) ∕= ∅.
Theorem 2.12. If ℱ is a collection of upper semi-continuous Haus-
dorff continuum-valued functions from a non-degenerate Hausdorff
continuum 𝑋 into 𝐶(𝑋), one of which is surjective and universal
with respect to ℱ , and 𝑓 is a closed subset of 𝑋 ×𝑋 that is the set
theoretic union of the collection ℱ , then 𝑓 : 𝑋 → 2𝑋 is an upper
semi-continuous function and lim←−𝒇 is a Hausdorff continuum.

Proof: Since 𝑓 is a closed subset of 𝑋 ×𝑋 and each point of 𝑋
is a first coordinate of some point of 𝑓 , 𝑓 is upper semi-continuous,
[4, Theorem 2.1]. Since lim←−𝒇 is compact, we need only to show
that this inverse limit is connected. Suppose 𝑓1 is a member of
ℱ that is surjective and universal with respect to ℱ . Since 𝑓1 is
surjective, the inverse limit, lim←−𝒇1, is a non-degenerate continuum.
Let 𝒚 be a point of lim←−𝒇 . There exists a sequence 𝜑1, 𝜑2, 𝜑3, . . .

such that 𝜑𝑖 ∈ ℱ and 𝜑𝑖(𝑦𝑖+1) = 𝑦𝑖 for each positive integer 𝑖.
Let 𝐶1 = lim←−𝒇1, and, if 𝑛 is a positive integer with 𝑛 > 1, let 𝐶𝑛

be the inverse limit of the sequence 𝜑1, 𝜑2, . . . , 𝜑𝑛−1, 𝑓1, 𝑓1, 𝑓1, . . . .
For each 𝑛, 𝐶𝑛 is a Hausdorff continuum by [4, Theorem 4.7] since
𝜑1, 𝜑2, . . . , 𝜑𝑛−1, and 𝑓1 are Hausdorff continuum valued. Since 𝑓1
is surjective, by Lemma 2.10, 𝐶𝑛 ∩ 𝐶𝑛+1 ∕= ∅. Thus,

∪
𝑖>0𝐶𝑖 is

connected. Moreover, for each 𝑛, since 𝑓1 is surjective and 𝑦𝑖 ∈
𝜑𝑖(𝑦𝑖+1) for each 𝑖, there is a point 𝒑𝒏 of 𝐶𝑛 such that 𝜋𝑖(𝒑

𝒏) = 𝑦𝑖
for 𝑖 ≤ 𝑛. It follows that 𝒚 ∈ 𝐶. Since lim←−𝒇 is the union of a
collection of connected sets all containing the connected set lim←−𝒇1,
lim←−𝒇 is connected. □

Using Theorem 2.9, we have the following corollary to Theorem
2.12.
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Theorem 2.13. If 𝑓 : [0, 1] → 2[0,1] is an upper semi-continuous
function that is the union of two upper semi-continuous interval-
valued functions one of which is surjective, then lim←−𝒇 is connected.

3. The full projection property

In inverse limits of mappings, closed subsets of the inverse limit
are the inverse limit of their projections. This fails for inverse limits
with upper semi-continuous bonding functions as may be seen by
the following example.

Example 3.1. Let 𝑓 : [0, 1] → 𝐶(0, 1]) be the function given by
𝑓(𝑥) = [0, 1] for each 𝑥 ∈ [0, 1]. Then lim←−𝒇 is the Hilbert cube

while 𝑀 = {𝒙 ∈ lim←−𝒇 ∣ 𝑥1 ∈ [0, 1] and 𝑥𝑖+1 = 𝑥𝑖 for each 𝑖} is an
arc that is a closed proper subset of lim←−𝒇 such that 𝜋𝑖(𝑀) = [0, 1]
for each 𝑖.

Alexander N. Cornelius presents a very nice characterization of
the compact subsets of an inverse limit that are inverse limits of
their projections in [1]. However, his characterization requires a
rather detailed knowledge of the inverse limit in order for it to be
checked. So we pose the following problem.

Problem 3.2. Find conditions on the bonding functions that en-
sure that closed subsets of the inverse limit are the inverse limit of
their projections.

Of course, it would be of interest to settle this problem in the
case of an inverse limit with a single bonding function, even a single
one on [0, 1]. Another special case of interest would be to settle the
problem in case our attention is restricted to which subcontinua are
inverse limits of their projections. Yet another possible interesting
variation on this problem would be to assume the bonding func-
tions are Hausdorff continuum-valued. One of the main uses of the
theorem in ordinary inverse limits is to conclude that if a closed
subset of an ordinary inverse limit has each of its projections the
entire factor space, then it is the entire inverse limit. So we pose a
variation on Problem 3.2.

If 𝑋1, 𝑋2, 𝑋3, . . . is a sequence of Hausdorff spaces and 𝑓𝑖 :
𝑋𝑖+1 → 2𝑋𝑖 is an upper semi-continuous function for each posi-
tive integer 𝑖, we shall say that 𝑀 = lim←−𝒇 has the full projection
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property provided it is true that if 𝐻 is a closed and connected
subset of 𝑀 such that 𝜋𝑛(𝐻) = 𝑋𝑛 for infinitely many positive
integers 𝑛, then 𝐻 = 𝑀 .

Problem 3.3. Find conditions on the bonding functions that en-
sure that an inverse limit has the full projection property.

Again, it would be of interest to settle this problem in the case of
an inverse limit with a single bonding function (or for subcontinua
of such inverse limits), even a single one on [0, 1]. It could also be
interesting to restrict attention to inverse limit sequences such that
𝑓𝑖 : 𝑋𝑖+1 → 𝐶(𝑋𝑖). In addition, a study of the full projection prop-
erty on closed subsets of the inverse limit could prove useful (i.e.,
drop the connectedness requirement). Example 3.5 shows that not
every inverse limit in which the bonding functions have connected
values possesses the full projection property. On the other hand,
the full projection property is not just a property of inverse limits
of mappings, as may be seen from the following example. Later we
use the fact that this example has the full projection property to
show that it is an indecomposable continuum. See Theorem 4.3. It
should also be mentioned that Varagona [8, Lemma 3.1] gives a suf-
ficient condition for an inverse limit with a single bonding function
to have the full projection property, although it cannot be used to
show that Example 3.4 has the full projection property.

Example 3.4. Let 𝑓 : [0, 1] → 2[0,1] be the function whose graph
consists of the union of three straight line segments, one from (0, 0)
to (1/2, 1), one from (1/2, 1) to (1/2, 0), and one from (1/2, 0) to
(1, 1). Then, lim←−𝒇 has the full projection property. (See Figure 8

for the graph of this function.)

Proof: Let 𝑛 be a positive integer and 𝐺′
𝑛 = {(𝑥1, 𝑥2, . . . , 𝑥𝑛+1) ∈

[0, 1]𝑛+1 ∣ 𝑥𝑖 ∈ 𝑓(𝑥𝑖+1) for 1 ≤ 𝑖 ≤ 𝑛}. We first show in-
ductively that if (𝑝1, 𝑝2, . . . , 𝑝𝑛+1) ∈ 𝐺′

𝑛 and 𝑝𝑛+1 /∈ {0, 1}, then
𝐺′

𝑛 − {(𝑝1, . . . , 𝑝𝑛+1)} is the union of two mutually separated sets,
one containing (0, 0, . . . , 0) and the other containing (1, 1, . . . , 1);
i.e., 𝐺′

𝑛 is an arc with end points (0, 0, . . . , 0) and (1, 1, . . . , 1). Since
𝐺′

1 = (𝐺(𝑓))−1 this is true for 𝑛 = 1. Assume it is true for 𝑛 = 𝑘
and let 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑘+2) be a point of 𝐺′

𝑘+1 such that 𝑝𝑘+2 /∈
{0, 1}. We consider cases: 𝑝𝑘+2 ∕= 1/2 and 𝑝𝑘+2 = 1/2. If 0 <
𝑝𝑘+2 < 1/2, then 𝑝𝑘+1 /∈ {0, 1} so𝐺′

𝑘−{(𝑝1, . . . , 𝑝𝑘+1)} = 𝐴𝑘,0∪𝐴𝑘,1
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(0,0)

(1,1)(1/2,1)

(1/2,0)

Figure 8. Graph of the bonding function (Example 3.4)

where 𝐴𝑘,0 and 𝐴𝑘,1 are mutually separated sets with (0, 0, . . . , 0) ∈
𝐴𝑘,0 and (1, 1, . . . , 1) ∈ 𝐴𝑘,1. Let 𝐴𝑘+1,0 = {(𝑥1, 𝑥2, . . . , 𝑥𝑘+2) ∈
𝐺′

𝑘+1 ∣ 𝑥𝑘+2 < 1/2 and (𝑥1, 𝑥2, . . . , 𝑥𝑘+1) ∈ 𝐴𝑘,0} and let 𝐴𝑘+1,1 =
{(𝑥1, 𝑥2, . . . , 𝑥𝑘+2) ∈ 𝐺′

𝑘+1 ∣ (1)𝑥𝑘+2 ≥ 1/2 or (2)𝑥𝑘+2 < 1/2
and (𝑥1, 𝑥2, . . . , 𝑥𝑘+1) ∈ 𝐴𝑘,1}. Then (0, 0, . . . , 0) is in 𝐴𝑘+1,0,
(1, 1, . . . , 1) is in 𝐴𝑘+1,1, 𝐴𝑘+1,0 and 𝐴𝑘+1,1 are mutually separated,
and 𝐺′

𝑘+1 − {𝑝} = 𝐴𝑘+1,0 ∪ 𝐴𝑘+1,1. If 1/2 < 𝑝𝑘+2 < 1, we obtain
the desired separation by letting 𝐴𝑘+1,0 = {(𝑥1, 𝑥2, . . . , 𝑥𝑘+2) ∈
𝐺′

𝑘+1 ∣ (1)𝑥𝑘+2 ≤ 1/2 or (2) 𝑥𝑘+2 > 1/2 and (𝑥1, 𝑥2, . . . , 𝑥𝑘+1) ∈
𝐴𝑘,0} and 𝐴𝑘+1,1 = {(𝑥1,𝑥2,. . . , 𝑥𝑘+2) ∈ 𝐺′

𝑘+1 ∣ 𝑥𝑘+2 > 1/2 and
(𝑥1,𝑥2,. . . ,𝑥𝑘+1) ∈ 𝐴𝑘,1}. If 𝑝𝑘+2 = 1/2, there are three possibil-
ities: 𝑝𝑘+1 = 0, 𝑝𝑘+1 = 1, and 𝑝𝑘+1 /∈ {0, 1}. Suppose 𝑝𝑘+1 = 0.
Note that 𝑝 = (0, 0, . . . , 0, 1/2). Let 𝐴𝑘+1,0 = {(𝑥1,𝑥2,. . . , 𝑥𝑘+2) ∈
𝐺′

𝑘+1 ∣ 𝑥𝑘+2 ≤ 1/2} − {𝑝} and 𝐴𝑘+1,1 = {(𝑥1,𝑥2,. . . , 𝑥𝑘+2) ∈
𝐺′

𝑘+1 ∣ 𝑥𝑘+2 > 1/2}. From the observation that 𝑝 is the only
limit point of 𝐴𝑘+1,1 having last coordinate 1/2, it follows that
𝐴𝑘,0 and 𝐴𝑘,1 are mutually separated. The case that 𝑝𝑘+1 = 1 is
similar. If 𝑝𝑘+1 /∈ {0, 1}, then 𝐺′

𝑘 = 𝐴𝑘,0∪𝐴𝑘,1 where (0, 0, . . . , 0) ∈
𝐴𝑘,0, (1, 1, . . . , 1) ∈ 𝐴𝑘,1, and 𝐴𝑘,0 and 𝐴𝑘,1 are mutually sep-
arated. We obtain the desired separation by letting 𝐴𝑘+1,0 =
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{(𝑥1,𝑥2, . . . ,𝑥𝑘+2) ∈ 𝐺′
𝑘+1 ∣ (1)𝑥𝑘+2 < 1/2 or (2) 𝑥𝑘+2 = 1/2

and (𝑥1, 𝑥2, . . . , 𝑥𝑘+1) ∈ 𝐴𝑘,1} and 𝐴𝑘+1,1 = {(𝑥1, 𝑥2, . . . , 𝑥𝑘+2) ∈
𝐺′

𝑘+1 ∣ (1)𝑥𝑘+2 > 1/2 or (2) 𝑥𝑘+2 = 1/2 and (𝑥1, 𝑥2, . . . , 𝑥𝑘+1) ∈
𝐴𝑘,0}.

Now suppose 𝐻 is a subcontinuum of lim←−𝒇 such that 𝜋𝑖(𝐻) =

[0, 1] for infinitely many positive integers 𝑖. Let 𝒑 be a point of
lim←−𝒇 such that 𝒑 /∈ {(0, 0, 0, . . . ), (1, 1, 1, . . . )}. Suppose 𝑛 is a

positive integer. There is a positive integer𝑚 ≥ 𝑛 such that 𝑝𝑚+1 /∈
{0, 1} and 𝜋𝑚+1(𝐻) = [0, 1]. Then (𝑝1, . . . , 𝑝𝑚+1) is in 𝐺′

𝑚 and
𝐺′

𝑚−{(𝑝1, . . . , 𝑝𝑚+1)} = 𝐴𝑚,0∪𝐴𝑚,1 where (0, 0, . . . , 0) ∈ 𝐴𝑚,0 and
(1, 1, . . . , 1) ∈ 𝐴𝑚,1. Thus, 𝐻 intersects the two mutually separated
sets 𝐴𝑚,0 × [0, 1]∞ and 𝐴𝑚,1 × [0, 1]∞ so 𝐻 contains a point in the
boundary of each of them. Consequently, 𝐻 contains a point 𝒒 such
that (𝑞1, 𝑞2, . . . , 𝑞𝑚+1) = (𝑝1, 𝑝2, . . . , 𝑝𝑚+1). Therefore, 𝑑(𝒒,𝒑) <

2−(𝑚+1) < 2−𝑛. It follows that 𝒑 ∈ 𝐻 so 𝐻 = lim←−𝒇 . □

One conjecture we had regarding Problem 3.3 was that if 𝑓 :
[0, 1] → 2[0,1] is an upper semi-continuous function such that the
graph of 𝑓 is irreducible from {0}× [0, 1] to {1}× [0, 1], then lim←−𝒇
has the full projection property. However, this turns out not to be
the case as may be seen from the following example.

Example 3.5. Let 𝑓 : [0, 1]→ 2[0,1] be the upper semi-continuous
function whose graph consists of three straight line intervals, one
from (0,0) to (1/2,1), one from (1/2,1) to (1/2,1/2), and the third
from (1/2,1/2) to (1,1). Then lim←−𝒇 does not have the full projection

property. (See Figure 9 for a picture of the bonding function.)

Proof: Let𝑀 = lim←−𝒇 and𝐴0 = {𝒙 ∈𝑀 ∣ 𝑥1 ∈ [0, 1/2] and 𝑥𝑘+1

=𝑥𝑘/2 for each positive integer 𝑘}. For each positive integer 𝑛, let
𝐴2𝑛−1 = {𝒙 ∈ 𝑀 ∣ 𝑥1 ∈ [1/2, 1] and 𝑥𝑘 = 𝑥1 for 1 ≤ 𝑘 ≤ 𝑛
while 𝑥𝑘+1 = 𝑥𝑘/2 for 𝑘 > 𝑛} and let 𝐴2𝑛 = {𝒙 ∈ 𝑀 ∣ 𝑥1 ∈
[1/2, 1] and 𝑥𝑘 = 𝑥1 for 1 ≤ 𝑘 ≤ 𝑛 while 𝑥𝑘 = 1/2𝑘−𝑛 for 𝑘 > 𝑛}.
For each integer 𝑖 ≥ 0, 𝐴𝑖 is an arc. Let 𝒑0 denote the point
of 𝑀 such that 𝜋𝑘(𝒑0) = 1/2𝑘 for each positive integer 𝑘. For
each positive integer 𝑛, let 𝒑2𝒏−1 be the point of 𝑀 such that
𝜋𝑘(𝒑2𝒏−1) = 1 for 1 ≤ 𝑘 ≤ 𝑛 and 𝜋𝑘(𝒑2𝒏−1) = 1/2𝑘−𝑛 for 𝑘 > 𝑛;
let 𝒑2𝒏 be the point of 𝑀 such that 𝜋𝑘(𝒑2𝒏) = 1/2 for 1 ≤ 𝑘 ≤ 𝑛
and 𝜋𝑘(𝒑2𝒏) = 1/2𝑘−𝑛 for 𝑘 > 𝑛. Note that 𝐴𝑖 ∩ 𝐴𝑖+1 = {𝒑𝒊}
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(0,0)

(1,1)

(1/2,1/2)

(1/2,1)

Figure 9. Graph of the bonding function (Example 3.5)

for each non-negative integer 𝑖. Then 𝑅 =
∪

𝑖≥0𝐴𝑖 is a topolog-

ical ray such that 𝑅 − 𝑅 = {𝒙 ∈ 𝑀 ∣ 𝑥1 ∈ [1/2, 1] and 𝑥𝑛 =
𝑥1 for each positive integer 𝑛}. Finally, 𝑅 is a proper subcontin-
uum of 𝑀 since 𝑅 does not contain the point (1, 1/2, 1/2, 1/2, . . . )
of 𝑀 , but 𝜋𝑖(𝑅) = [0, 1] for each positive integer 𝑖. □

4. Indecomposability

D. P. Kuykendall [5] gave a characterization of indecomposability
of an inverse limit of a sequence of mappings. Numerous investi-
gations of inverse limits with mappings have turned up sufficient
conditions that the inverse limit be indecomposable. A number of
these require that the bonding maps or compositions of the bonding
maps satisfy an approximate two-pass condition. For inverse lim-
its on intervals with mappings, the two-pass condition is a simple,
sufficient condition for indecomposability of the inverse limit. That
condition for maps of intervals is that there are two non-overlapping
intervals each of which is mapped onto the entire interval. The cor-
responding theorem for upper semi-continuous functions on [0, 1]
fails miserably. For example, the Hilbert cube is the inverse limit
of the single upper semi-continuous function 𝑓 : [0, 1]→ 2[0,1] whose
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graph is the entire disk, [0, 1]× [0, 1]. Varagona [8] has investigated
decomposability and indecomposability in inverse limits with up-
per semi-continuous bonding functions and has obtained some very
nice results. He has sufficient conditions for an inverse limit with
certain upper semi-continuous bonding functions to be indecom-
posable and conditions that are sufficient that the inverse limit be
decomposable. He has applied some of his results to show that the
inverse limit of the function whose graph is the sin(1/𝑥)-curve com-
pressed into [0, 1] × [0, 1] produces an indecomposable continuum.
There seems to be ample reason to devote further study to ways
indecomposability arises in inverse limits with set-valued functions.

Problem 4.1. Find sufficient conditions on the bonding functions
so that lim←−𝒇 is indecomposable.

Once again, it would be of interest to obtain solutions to this
problem for inverse limits with a single upper semi-continuous func-
tion, even one on [0, 1] (and it could be of interest to consider that
𝑓𝑖 : 𝑋𝑖+1 → 𝐶(𝑋𝑖) for each 𝑖). We provide one such theorem,
see Theorem 4.3, that does not require that the bonding functions
have connected values to close this section. We offer the following
replacement for the two-pass condition. If 𝑋 and 𝑌 are Hausdorff
continua and 𝑓 : 𝑋 → 2𝑌 is an upper semi-continuous function,
we say that 𝑓 satisfies the two-pass condition if there are mutually
exclusive connected open subsets 𝑈 and 𝑉 of 𝑋 so that 𝑓 ∣ 𝑈 and

𝑓 ∣ 𝑉 are mappings and 𝑓(𝑈) = 𝑓(𝑉 ) = 𝑌 . If 𝑛 ≥ 3 is an integer,
we say that the continuum 𝑇 is a simple 𝑛-od provided there is a
point 𝐽 of 𝑇 such that 𝑇 is the union of 𝑛 arcs, each two of which
intersect only at 𝐽 . We call 𝐽 the junction point of 𝑇 and the other
end points of the arcs that make up 𝑇 the end points of 𝑇 .

Lemma 4.2. Suppose 𝑇 is an arc or a simple 𝑛-od for some integer
𝑛 ≥ 3 and 𝑇 is the union of two proper subcontinua 𝐻 and 𝐾. If
𝑈 and 𝑉 are mutually exclusive connected open subsets of 𝑇 , then
one of 𝑈 and 𝑉 is a subset of one of 𝐻 and 𝐾.

Proof: If 𝑇 is an arc, let 𝐽 denote a separating point of 𝑇 , and
let 𝐽 be the junction point of 𝑇 if 𝑇 is an 𝑛-od. The point 𝐽 cannot
belong to both 𝑈 and 𝑉 . Suppose 𝐽 /∈ 𝑈 and 𝐴 is the end point
of 𝑇 such that 𝑈 is a subset of the arc [𝐽,𝐴]. Assume 𝐴 ∈ 𝐻. If
𝐽 ∈ 𝐻, then 𝑈 ⊆ 𝐻. If 𝐽 /∈ 𝐻 and 𝑈 is not a subset of either 𝐻
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or 𝐾, then 𝐻 ∩𝐾 ⊆ 𝑈 . If 𝐴 ∈ 𝑈 , then 𝑇 − 𝑈 ⊆ 𝐾 so 𝑉 ⊆ 𝐾. If
𝐴 /∈ 𝑈 , then 𝑇 − 𝑈 is the union of two mutually exclusive closed
sets 𝐶 and 𝐷 with 𝐴 ∈ 𝐶. Then 𝑉 ⊆ 𝐶 or 𝑉 ⊆ 𝐷. Since 𝐶 ⊆ 𝐻
and 𝐷 ⊆ 𝐾, 𝑉 ⊆ 𝐻 or 𝑉 ⊆ 𝐾. □

One consequence of our next theorem is that the inverse limit
from Example 3.4 is indecomposable. This theorem generalizes [2,
Theorem 3.4]. In private correspondence with the author, Varagona

observed that if 𝑓 : [0, 1] → 2[0,1] is the upper semi-continuous
function whose graph consists of three straight line intervals, one
from (0, 1) to (0, 0), one from (0, 0) to (1/2, 1), and one from (1/2, 1)
to (1, 0), then 𝑓 satisfies the two-pass condition, but lim←−𝒇 does not
have the full projection property.

Theorem 4.3. Suppose 𝑇1, 𝑇2, 𝑇3, . . . is a sequence such that if 𝑖
is a positive integer, then 𝑇𝑖 is an arc or there is a positive integer
𝑛𝑖 so that 𝑇𝑖 is a simple 𝑛𝑖-od. If 𝑓𝑖 : 𝑇𝑖+1 → 2𝑇𝑖 is an upper
semi-continuous function satisfying the two-pass condition for each
positive integer 𝑖 and lim←−𝒇 is a continuum with the full projection
property, then lim←−𝒇 is indecomposable.

Proof: Suppose 𝑀 = lim←−𝒇 is the union of two proper subcon-
tinua 𝐻 and 𝐾. Since 𝑀 has the full projection property, there
is a positive integer 𝑛 such that if 𝑚 ≥ 𝑛, then 𝜋𝑚(𝐻) ∕= 𝑇𝑚 and
𝜋𝑚(𝐾) ∕= 𝑇𝑚. Since 𝑓𝑛 satisfies the two pass condition there are
mutually exclusive connected open subsets 𝑈 and 𝑉 of 𝑇𝑛+1 so that

𝑓𝑛 ∣ 𝑈 and 𝑓𝑛 ∣ 𝑉 are mappings and 𝑓𝑛(𝑈) = 𝑓𝑛(𝑉 ) = 𝑇𝑛. Since
𝜋𝑛+1(𝐻) and 𝜋𝑛+1(𝐾) are two subcontinua whose union is 𝑇𝑛+1,
by Lemma 4.2, one of 𝑈 and 𝑉 is a subset of one of 𝜋𝑛+1(𝐻) and
𝜋𝑛+1(𝐾). Suppose 𝑈 ⊆ 𝜋𝑛+1(𝐻). If 𝑡 ∈ 𝑓𝑛(𝑈) there is a point 𝑠
of 𝑈 such that 𝑓𝑛(𝑠) = 𝑡. Since 𝑈 ⊆ 𝜋𝑛+1(𝐻), there is a point 𝒙
of 𝐻 such that 𝑥𝑛+1 = 𝑠. Then 𝑥𝑛 = 𝑡 so 𝑡 ∈ 𝜋𝑛(𝐻) and it follows

that 𝑓𝑛(𝑈) ⊆ 𝜋𝑛(𝐻). However, since 𝑓𝑛(𝑈) = 𝑇𝑛, this contradicts
the fact that 𝜋𝑛(𝐻) ∕= 𝑇𝑛. The other possibilities similarly lead to
a contradiction. □

5. Subsequence theorem

If 𝑿 is a sequence of compact Hausdorff spaces and 𝒇 is a se-
quence of mappings such that 𝑓𝑖 : 𝑋𝑖+1 → 𝑋𝑖 for each positive
integer 𝑖, and 𝑚 and 𝑛 are integers with 𝑛 < 𝑚, it is sometimes
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convenient to denote by 𝑓𝑛𝑚 the mapping from 𝑋𝑚 into 𝑋𝑛 given
by 𝑓𝑛𝑚 = 𝑓𝑛∘𝑓𝑛+1∘⋅ ⋅ ⋅∘𝑓𝑚−1. One very powerful tool in the theory
of ordinary inverse limits is the subsequence theorem; i. e., if 𝒏 is an
increasing sequence of positive integers and 𝒈 is a sequence of map-
pings such that 𝑔𝑖 = 𝑓𝑛𝑖 𝑛𝑖+1 for each positive integer 𝑖, then lim←−𝒇
and lim←− 𝒈 are homeomorphic. Early in the development of the the-
ory of inverse limits with set-valued functions came the observation
that the subsequence theorem does not carry over. For examples of
this phenomenon see [4, Example 3, p. 127 and Example 4, p. 128].
It would be nice to have some sufficient conditions on the bonding
functions to ensure that the subsequence theorem holds. Employ-
ing similar notation for 𝑓𝑛𝑚 for upper semi-continuous functions,
we state the following problem.

Problem 5.1. If 𝑿 is a sequence of compact Hausdorff spaces
and 𝒇 is a sequence of upper semi-continuous functions such that
𝑓𝑖 : 𝑋𝑖+1 → 2𝑋𝑖 (or 𝑓𝑖 : 𝑋𝑖+1 → 𝐶(𝑋𝑖)) for each positive integer
𝑖, and 𝑛1, 𝑛2, 𝑛3, . . . is an increasing sequence of positive integers,
find sufficient conditions on the bonding functions such that if 𝑔𝑖 =
𝑓𝑛𝑖 𝑛𝑖+1 for each 𝑖, then lim←−𝒇 and lim←− 𝒈 are homeomorphic.

Like some of the other problems stated in this paper, Problem
5.1 may be too general to attack at the present. A simpler and,
perhaps, more tractable problem is its counterpart for inverse limits
with a single set-valued function.

Problem 5.2. If 𝑓 : 𝑋 → 2𝑋 is an upper semi-continuous function
on a compact Hausdorff space 𝑋 and 𝑛 is a positive integer greater
than 1, find sufficient conditions such that lim←−𝒇 is homeomorphic
to lim←−𝒇𝒏.

Of course, an answer to this problem for 𝑛 = 2 would be of
interest as would an answer in case 𝑋 = [0, 1]. One simple, but
obvious, such condition for inverse limits with a single set-valued
function is that the bonding function 𝑓 be idempotent, i. e., 𝑓2 = 𝑓 .
This is the case with the set-valued function that is the union of
the identity, 𝑖𝑑, and 1− 𝑖𝑑 on [0, 1].

Theorem 5.3. If 𝑓 : 𝑋 → 2𝑋 is an upper semi-continuous func-
tion on a compact Hausdorff space such that 𝑓2 = 𝑓 and 𝑛 is a
positive integer, then lim←−𝒇 and lim←−𝒇𝒏 are homeomorphic.
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6. Incommensurate objects

Nall [7] has shown that the 2-cell is not homeomorphic to an in-
verse limit with a single upper semi-continuous function 𝑓 : [0, 1]→
2[0,1]. At the meeting of the American Mathematical Society at
Baylor University in October 2009, Alejandro Illanes announced
that a simple closed curve also cannot be such an inverse limit.
Many opportunities exist for further exploration along these lines.

Problem 6.1. For a given compact Hausdorff space 𝑋, which com-
pact sets are not homeomorphic to inverse limits with a single upper
semi-continuous function 𝑓 : 𝑋 → 2𝑋 (𝑓 : 𝑋 → 𝐶(𝑋))?

Of course, adding to the list of known examples for inverse limits
on [0, 1] would be of considerable interest. It would also be of
interest to study such problems for inverse limits of upper semi-
continuous functions on the unit circle or the simple triod.

7. Bases for the topology

In ordinary inverse limits, {𝜋−1
𝑖 (𝑂) ∣ 𝑖 is a positive integer and

𝑂 is open in 𝑋𝑖} is a basis for the topology of the inverse limits.
However, for inverse limits with upper semi-continuous bonding
functions, this is not always the case. We may see this from Ex-
ample 3.1. Let 𝑅 = [0, 1/4)× (3/4, 1]×𝒬. Suppose 𝑖 is a positive
integer and 𝑂 is an open subset of [0, 1]. If 𝑡 is a point of 𝑂, then
(𝑡, 𝑡, 𝑡, . . . ) is a point of the inverse limit in 𝜋−1

𝑖 (𝑂), but since 𝑡
cannot belong to both [0, 1/4) and (3/4, 1], (𝑡, 𝑡, 𝑡, . . . ) is not in 𝑅.
This leads us the our next problem. This problem may or may not
be very interesting, but it fits our theme so we include it.

Problem 7.1. Find conditions on the bonding functions that en-
sure that {𝜋−1

𝑖 (𝑂) ∣ 𝑖 is a positive integer and 𝑂 is open in 𝑋𝑖}
is a basis for the topology of the inverse limit with upper semi-
continuous bonding functions that are not mappings.
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