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CONCERNING DIMENSION AND TREE-LIKENESS OF

INVERSE LIMITS WITH SET-VALUED FUNCTIONS

W. T. INGRAM

Abstract. From a theorem of Van Nall it is known that inverse limits with

sequences of upper semi-continuous set-valued functions with 0-dimensional

values have dimension bounded by the dimensions of the factor spaces. Infor-

mation is also available about the dimension of inverse limits with sequences

of upper semi-continuous continuum-valued bonding functions having graphs

that are mappings on the factor spaces that have continua appended at each

point of a closed set, however the conclusion of this theorem allows the pos-

sibility of an infinite dimensional inverse limit. In this paper we show that

inverse limits with sequences of certain surjective upper semi-continuous

continuum-valued bonding functions have dimension bounded by the di-

mensions of the factor spaces. One consequence of our investigation is that

certain inverse limits on [0, 1] with upper semi-continuous continuum-valued

functions are tree-like including those that are inverse limits on [0, 1] with a

single interval-valued bonding function that has no flat spots.

1. Introduction

In a list of problems in An Introduction to Inverse Limits with Set-valued

Functions the author asked for sufficient conditions on bonding functions on [0, 1]

so that the inverse limit is a tree-like continuum [5, Problem 6.49]. In a recent

article [6], the author showed that such an inverse limit is tree-like in the case that

there is only one surjective bonding function f that is the union of two mappings

on [0, 1] having only one point (x, x) in common and f−1(x) = {x}. Theorem 4.2

of this paper demonstrates tree-likeness of the inverse limit of certain sequences

of surjective interval-valued functions on [0, 1]. One result of our investigation is

that if f : [0, 1] → C([0, 1]) is a surjective upper semi-continuous function and
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G(f) contains no horizontal interval (i.e., f has no “flat spots”), then lim
←−

f is

tree-like. We include examples showing the necessity of the hypotheses in our

theorems and provide a sequence of new examples relating to the need for care

with flat spots. We also include an example of a surjective bonding function

f : [0, 1] → C([0, 1]) that has flat spots but such that lim
←−

f is tree-like. Our

tree-likeness results are obtained from a study of dimension in inverse limits on

continua with continuum-valued bonding functions in Section 3.

2. Definitions

If X is a metric space, we denote the collection of closed subsets of X by 2X and

the connected elements of 2X by C(X). If X and Y are metric spaces, a function

f : X → 2Y is said to be upper semi-continuous at the point x of X provided

that if V is an open set in Y that contains f(x) then there is an open set U in X

containing x such that if t is a point of U then f(t) ⊆ V . A function f : X → 2Y

is called upper semi-continuous provided it is upper semi-continuous at each point

of X . If f : X → 2Y , we say that f is surjective provided that for each y ∈ Y

there is a point x ∈ X such that y ∈ f(x). If f : X → 2Y is a set-valued function,

by the graph of f , denoted G(f), we mean {(x, y) ∈ X × Y | y ∈ f(x)}. It is

known that if X and Y are compact and M is a subset of X × Y such that X is

the projection of M to its set of first coordinates then M is closed if and only

if M is the graph of an upper semi-continuous function [7, Theorem 2.1]). One

consequence of this theorem is that if A is a closed subset of Y then f−1(A) is a

closed subset of X . In the case that f is upper semi-continuous and single-valued,

i.e., f(x) is degenerate for each x ∈ X , f is a continuous function. By a mapping

we mean a continuous function.

We denote by N the set of positive integers. If s = s1, s2, s3, . . . is a se-

quence (or s = s1, s2, . . . , sn is a finite sequence), we normally denote the se-

quence in boldface type and its terms in italics. If X is a sequence of metric

spaces, we denote the product of the terms of X by
∏

i>0 Xi. The points of
∏

i>0 Xi are sequences so if x ∈
∏

i>0 Xi, it should not be a problem denoting x

by x1, x2, x3, . . . . However, we adopt the usual convention of enclosing the terms

of x in parentheses, x = (x1, x2, x3, . . . ), to signify that x is a point of the product

space. A metric d compatible with the product topology for
∏

i>0 Xi is given by

d(x,y) =
∑

i>0 di(xi, yi)/2i where, for each i ∈ N, di is a metric for Xi bounded

by 1.
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Suppose X is a sequence of metric spaces and f is a sequence of upper semi-

continuous functions such that fn : Xn+1 → 2Xn for each n ∈ N. Such a pair

of sequences {X,f} is called an inverse limit sequence. The inverse limit of

the inverse limit sequence {X,f}, denoted lim
←−

f , is the subset of
∏

i>0 Xi that

contains the point (x1, x2, x3, . . . ) if and only if xn ∈ fn(xn+1) for each posi-

tive integer n. In the case that fn is a mapping, the condition xn ∈ fn(xn+1)

becomes xn = fn(xn+1). For an inverse limit sequence {X,f}, the spaces Xi

are called factor spaces and the functions fn are called bonding functions. In

the case that the sequences X and f are constant, the inverse limit sequence

is said to be an inverse limit sequence with only one bonding function. That

inverse limits are nonempty and compact when the factor spaces are compact

and the bonding functions upper semi-continuous is [7, Theorem 3.2]; inverse

limit spaces are metric because the product space that contains them is met-

ric. If each of X,Y , and Z is a metric space and each of f : X → 2Y and

g : Y → 2Z is a function, by g ◦ f : X → 2Z we mean the function given by

g ◦ f(x) = {z ∈ Z | there is a point y ∈ Y such that y ∈ f(x) and z ∈ g(y)}. If

X is a metric space, we denote the identity on X by IdX . If {X,f} is an inverse

limit sequence, we adopt the usual convention that if i and j are integers with

i < j, fi j : Xj → Xi is the function given by fi j = fi ◦ fi+1 ◦ · · · ◦ fj−1 while

fi i = IdXi
.

Suppose X is a sequence of metric spaces and A ⊆ N. Denote by pA :
∏

i>0 Xi →
∏

i∈A Xi the projection given by pA(x) = y where yi = xi for each

i ∈ A. If A = {n}, we denote pA by pn. For inverse limits, we denote by πA the

restriction of pA to lim
←−

f .

By a continuum we mean a compact, connected metric space. If {X,f} is an

inverse limit sequence where each Xn is a continuum and each fn is an upper

semi-continuous set-valued function, we let G′(f1, f2, . . . , fn) = {x ∈
∏n+1

i=1 Xi |

xj = fj(xj+1) for 1 ≤ j ≤ n}. Sometimes we denote G′(f1, f2, . . . , fn) by G′
n. In

the case that n = 1, G′(f1) = (G(f1))−1. In many proofs of properties of inverse

limits, the approximations of the inverse limit Gn = G′
n × (

∏

i>n+1 Xi) are used

extensively (e.g., [7, Theorem 3.2]).

We make use of the following theorem from [7] where it proved in a more

general setting (Theorem 4.7, page 124).
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Theorem 2.1. Suppose X is a sequence of continua and f is a sequence of upper

semi-continuous functions such that fn : Xn+1 → C(Xn) for each n ∈ N. Then,

lim
←−

f is a continuum.

We use dimension in the standard sense as found in Hurewicz and Wallman

[3]. If M is a compactum, dim(M) denotes its dimension. A continuum is tree-

like provided it is homeomorphic to an inverse limit on trees (or, equivalently,

its dimension is 1 and every mapping of it to a finite graph is inessential). Also,

a continuum is tree-like if and only if it is a 1-dimensional continuum of trivial

shape.

3. Dimension

In [9, Theorem 5.3] Van Nall proves Theorem 3.1 below and in [1, Theorem

1.2] Iztok Banic includes Theorem 3.2.

Theorem 3.1. (Nall) Suppose m is a positive integer, X is a sequence of com-

pact metric spaces such that dim(Xn) ≤ m for each n ∈ N, and f is a sequence of

upper semi-continuous set-valued functions such that fn : Xn+1 → 2Xn for each n.

If dim(fn(x)) = 0 for each point x ∈ Xn+1 and each n ∈ N, then dim(lim
←−

f ) ≤ m.

Theorem 3.2. (Banic) Suppose X is a nondegenerate continuum, A is a closed

subset of X, and g : X → X is a mapping. If f : X → X is the upper

semi-continuous function such that G(f) = g ∪ (A × X), then dim(lim
←−

f) ∈

{dim(X),∞}.

In this section, we prove a theorem (Theorem 3.4) that allows us to conclude

that dim(lim
←−

f ) = dim(X) under certain conditions on the set where the bond-

ing functions have continuum values. In this sense our result is kin to that of

Banic. Our theorem also allows sequences of factor spaces with sequences of

bonding functions in the manner of Nall’s theorem but allows function values to

be nondegenerate continua instead of requiring that they be totally disconnected.

Moreover, unlike Banic’s Theorem, we do not require that the bonding functions

be based on mappings of the factor spaces.

We begin with a theorem on the dimension of G′(f1, f2, . . . , fn). Its proof

is embedded in the proof of Theorem 181 of [8]. We include its proof here for

completeness. As is often the case for the study of dimension in inverse limits,

we use covering dimension [3, Chapter V].

Theorem 3.3. Suppose X is a sequence of compact metric spaces and f is a

sequence of functions such that fn : Xn+1 → 2Xn is upper semi-continuous for
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each positive integer n. If dim(G′(f1, f2, . . . , fn)) ≤ m for each positive integer

n, then dim(lim
←−

f ) ≤ m.

Proof. Let di be a metric on Xi that is bounded by 1 or each i ∈ N and d

be usual metric on
∏

i>0 Xi. For convenience, we use the metric ρj on
∏j

i=1 Xi

given by ρj(x,y) =
∑j

i=1 di(xi, yi)/2i. For each positive integer n, let Gn =

G′(f1, f2, . . . , fn)×
∏

i>n+1 Xi and note that lim
←−

f ⊆ Gn.

Suppose ε > 0. There is a positive integer n such that
∑

i>n 1/2i < ε/3. There

is a is a finite open cover U of G′(f1, f2, . . . , fn) of order not greater than m and

such that if u ∈ U then diam(u) < ε/2 (i.e., the mesh of U is less than ε/2). If

u ∈ U and x and y are in p−1
{1,2,...,n+1}(u), then d(x,y) =

∑n+1
i=1 di(xi, yi)/2i +

∑

i>n+1 di(xi, yi)/2i. Because diam(u) < ε/2, ρn+1(x,y) =
∑n+1

i=1 di(xi, yi)/2i <

ε/2. Therefore, diam(p−1
{1,2,...,n+1}(u)) < ε. The order of V = {p−1

{1,2,...,n+1}(u) |

u ∈ U} is not greater than m. Thus, we have an open cover of Gn of mesh less

than ε and order not greater m.

Because lim
←−

f ⊆ Gn for each positive integer n, it follows that dim(lim
←−

f) ≤

m. �

Lemma 3.1. Suppose m is a positive integer, X is a sequence of continua such

that dim(Xn) ≤ m for each n ∈ N, and O is a sequence of open sets such that

On ⊆ Xn for each n. If g is a sequence of mappings such that gn : On+1 → On

for each n, then dim(G′(g1, g2, . . . , gi)) ≤ m for each positive integer i.

Proof. Suppose i ∈ N. The function ϕ : Oi+1 → G′(g1, g2, . . . , gi) given by

ϕ(x) = (g1 i+1(x), . . . , gi i+1(x), x) for each x ∈ Oi+1 is a 1-1 mapping and

ϕ(Oi+1) = G′(g1, g2, . . . , gi). Because Oi+1 is open in the continuum Xi+1 it

is the union of a sequence F of compact sets. Because dim(ϕ(Fj)) ≤ m for each

j and ϕ is a homeomorphism on Fj , we see that ϕ(Oi+1) is the union of a se-

quence of compacta of dimension not greater than m. By [3, Theorem III 2],

dim(ϕ(Oi+1)) ≤ m so dim(G′(g1, g2, . . . , gi)) ≤ m. �

Theorem 3.4. Suppose m is a positive integer, X is a sequence of continua

of dimension not greater than m, and f is a sequence of upper semi-continuous

functions such that fn : Xn+1 → C(Xn) for each n ∈ N. If, for each n > 1,

Zn is a closed 0-dimensional subset of Xn such that gn = fn|(Xn+1 − Zn+1) is

a mapping and f−1
i j (Zi) is zero dimensional for each i ≥ 2 and each j > i, then

dim(lim
←−

f) ≤ m.
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Proof. Let W2 = Z2 and, for n > 2, let Wn = Zn∪f
−1
n−1(Wn−1). Note that W3 =

Z3 ∪ f
−1
2 (Z2) and, in general, for n > 2, Wn = Zn ∪ f

−1
n−1n(Zn−1)∪ · · · ∪ f−1

2n (Z2).

Moreover, because each bonding function is upper semi-continuous, Wn is closed

for each n ≥ 2. Suppose n ≥ 2. Because Zn and f−1
i n (Zi) are 0-dimensional for

2 ≤ i ≤ n− 1, dim(Wn) = 0 [3, Theorem III 2].

Let O1 = X1 and, for n > 1, let On = Xn −Wn; On is open for each n. For

each positive integer n, let gn = fn|On+1. Because On+1 ⊆ Xn+1 −Zn+1, gn is a

mapping for each n. If t ∈ On+1, then t /∈ f−1
i n+1(Zi) for 1 ≤ i ≤ n so fn(t) /∈ Zn

and fn(t) /∈ f−1
i n (Zi) for 1 ≤ i ≤ n− 1. It follows that gn(t) ∈ On and, thus, gn is

a mapping of On+1 into On. By Lemma 3.1, dim(G′(g1, g2, . . . , gn) ≤ m for each

n.

Next we show that, for each n ∈ N,

(∗) G′(f1, f2, . . . , fn) ⊆ G′(g1, g2, . . . , gn) ∪
(

X1 ×W2 ×W3 × · · · ×Wn+1

)

∪
(

G′(f1)×W3 ×W4 · · · ×Wn+1

)

∪
(

G′(f1, f2)×W4 × · · · ×Wn+1

)

∪ · · · ∪
(

G′(f1, f2, . . . , fn−1)×Wn+1

)

.

To that end, let x ∈ G′(f1, f2, . . . , fn) − G′(g1, g2, . . . , gn). Then there is an

integer j, 1 ≤ j ≤ n, such that xj 6= gj(xj+1). If j = n, then xn+1 ∈ Wn+1

and x ∈ G′(f1, f2, . . . , fn−1) × Wn+1. If 1 < j < n and xk = gk(xk+1) for

j < k ≤ n then xj+1 ∈ Wj+1 and xi+1 ∈ g−1
i (xi) for j + 1 ≤ i ≤ n. In this case

x ∈ G′(f1, f2, . . . , fj−1)×Wj+1 × · · ·Wn+1. If x1 6= g(x2) but xk = gk(xk+1) for

2 ≤ k ≤ n, then x ∈ X1 ×W2 × · · · ×Wn+1.

With (∗) established, we proceed by induction to prove that dim(G′(f1, f2,

. . . , fn)) ≤ m for each n ∈ N. Note that dim(G′(f1)) ≤ m because G′(f1) ⊆

G′(g1)∪(X1×W2) and dim(G′(g1)) ≤ m by Lemma 3.1 while dim(X1×W2) ≤ m

by [3, Corollary, p. 33] being the product of a set of dimension not greater than m

with a 0-dimensional set. Suppose inductively that dim(G′(f1, f2, . . . , fi)) ≤ m

for 1 ≤ i < k. Then, again using the Corollary on p. 33 of [3], we see that

X1 ×W2 ×W3 × · · · ×Wk+1, G′(f1) ×W3 ×W4 · · · ×Wk+1, G′(f1, f2) ×W4 ×

· · ·×Wk+1, . . . G
′(f1, f2, . . . , fk−1)×Wk+1 all have dimension not greater than m.

Because dim(G′(g1, g2, . . . , gk)) ≤ m it follows from (∗), the inductive hypothesis,

and Theorem III 2 of [3] that dim(G′(f1, f2, . . . , fk)) ≤ m being a subset of an

m-dimensional space.

We now apply Theorem 3.3 to see that dim(lim
←−

f) ≤ m. �
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4. Tree-likeness

We now turn to showing that certain inverse limits on [0, 1] with interval-

valued functions are tree-like. Our theorem depends on a theorem of W lodzimierz

Charatonik and Robert P. Roe [2] concerning the shape of inverse limits with set-

valued functions, Theorem 4.1 below. However, beyond Theorem 4.1, we do not

need much information about shape other than the fact that among continua of

dimension 1, the property of having trivial shape is equivalent to being tree-like.

Theorem 4.1. (Charatonik and Roe) Suppose X is a sequence of finite di-

mensional continua with trivial shape and f is a sequence of functions such that

fn : Xn+1 → C(Xn) is an upper semi-continuous function for each n ∈ N. If

fn(x) has trivial shape for each n ∈ N and each x ∈ Xn+1, then lim
←−

f has trivial

shape.

Because in compact metric spaces being totally disconnected is equivalent to

being 0-dimensional [3, Prop. D, p. 22] the following theorem is an immediate

consequence of Theorems 3.4 and 4.1.

Theorem 4.2. Suppose f is a sequence of functions such that fn : [0, 1] →

C([0, 1]) is a surjective upper semi-continuous function for each positive integer

n. If, for each n > 1, Zn is a closed totally disconnected subset of [0, 1] such that

if fn(t) is nondegenerate then t ∈ Zn and f−1
i n (Zi) is totally disconnected for each

i, 1 ≤ i ≤ n, then lim
←−

f is a tree-like continuum.

Proof. Let M = lim
←−

f ; because each bonding function is continuum-valued, M

is a continuum by Theorem 2.1. By Theorem 3.4, dim(M) ≤ 1; because each

bonding function is surjective M is easily seen to be nondegenerate so dim(M) =

1. By Theorem 4.1, M has trivial shape. Because M is 1-dimensional, M is a

tree-like continuum. �

In the remainder of this section, we make use of the following theorem of Nall

[9, Theorem 5.4].

Theorem 4.3. (Nall) Suppose X1 is a continuum such that every nondegenerate

subcontinuum K of X1 contains a countable set that separates K. If X is a

sequence of compacta and f is a sequence of upper semi-continuous functions

such that, for each positive integer n, fn : Xn+1 → 2Xn and, for each y ∈ Xn,

dim(f−1
n (y)) = 0, then dim(lim

←−
f) ≤ 1.

In correspondence with the author Nall suggested the following consequence of

Theorem 4.3. The reader should note that the bonding functions are assumed to
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be continuum-valued. Examples show that without this hypothesis, the statement

is false, e.g., see Examples 4.1 and 4.2 of [6].

Theorem 4.4. Suppose X is a sequence of trees and f is a sequence of upper

semi-continuous functions such that fn : Xn+1 → C(Xn) for each n ∈ N. If

dim(f−1
n (x)) = 0 for each x ∈ Xn and each positive integer n, then lim

←−
f is a

tree-like continuum.

Proof. Let M = lim
←−

f ; M is a continuum by Theorem 2.1. By Theorem 4.3,

dim(M) ≤ 1. Because f is surjective, M is nondegenerate so dim(M) = 1. By

Theorem 4.1, M has trivial shape so M is tree-like. �

If f : [0, 1] → 2[0,1] is a function, we say that f has a flat spot provided G(f)

contains a nondegenerate horizontal interval. Corollary 4.1 below would be a

corollary of Theorem 4.2 if we were to add the hypothesis that the closure of the

set of points where f has interval values is totally disconnected. However, the

statement is a corollary of Theorem 4.4.

Corollary 4.1. If f : [0, 1] → C([0, 1]) is a surjective upper semi-continuous

function with no flat spots, then lim
←−

f is a tree-like continuum.

5. Examples

Without some conditions limiting the role of flat spots on the graph of an

upper semi-continuous function f : [0, 1] → C([0, 1]), our dimension results fail.

We begin with a couple of well-known examples. In our first example, the set

Z = {t ∈ [0, 1] | f(t) is nondegenerate} = {0} but f−1(0) = [0, 1]. The inverse

limit is infinite dimensional because it contains ([0, 1]× 0)∞.

Example 5.1. Let f : [0, 1]→ C([0, 1]) be the function given by f(t) = 0 if t 6= 0

and f(0) = [0, 1]. Then, lim
←−

f is infinite dimensional.

In our next example the set Z = {t ∈ [0, 1] | f(t) is nondegenerate} = {1/2, 1}

but f−1(1/2) = [1/2, 1]. The inverse limit contains [0, 1/2]×{1/2}×[1/2, 1]×{1}∞

so it is not 1-dimensional. (It is known that the inverse limit is a 2-cell with a

sticker [8, Example 139, p. 104] or [7, Example 5]).

Example 5.2. Let f : [0, 1] → C([0, 1] be given by f(t) = 0 for 0 ≤ t < 1/2,

f(1/2) = [0, 1/2], f(t) = 1/2 for 1/2 < t < 1 and f(1) = [1/2, 1]. Then,

dim(lim
←−

f) = 2.

The function in the following example includes flat spots but the inverse limit

can be seen to be tree-like using Theorem 4.2. The example is a modification of
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(1/2,0)

(5/6,1/2)

(2/3,1/2)

(1,1)

.

.

.

.

(0,0)

(1/2,1/2)

(1/2,1) (1,1)

(1/4,1/2)

(1/8,1/4)

Figure 1. The graphs of the building block mapping ϕ (left)

and the bonding function in Example 5.3

Example 3.5 of [4] which was studied further as Example 3.11 of [5]. Example

5.3 does not satisfy the conditions of Theorem 3.2 even if we change the value of

f(1/2) from [1/2, 1] to [0, 1].

Example 5.3. Let ϕ : [1/2, 1]→ [0, 1] be the map consisting of three line inter-

vals, one from (1/2, 0) to (2/3, 1/2) one from (2/3, 1/2) to (5/6, 1/2), and one

from (5/6, 1/2) to (1, 1). Let f : [0, 1] → C([0, 1]) be the upper semi-continuous

function given by f(0) = 0; f(1/2) = [1/2, 1]; f(t) = (1+ϕ(t))/2 for 1/2 < t ≤ 1;

for n ≥ 1, f(t) =
(

1+ϕ(2nt)
)

/2n for t ∈ (1/2n+1, 1/2n]. Then, lim
←−

f is a tree-like

continuum. (See Figure 1 for the graphs of ϕ and f .)

Proof. Let M = lim
←−

f ; M is a continuum by Theorem 2.1. The set Z = {t ∈

[0, 1] | f(t) is nondegenerate} = {1/2} and f−j(Z) = {1/2, 1/4, . . . , 1/2j+1} for

each j ∈ N, a totally disconnected set for each j. Theorem 4.2 yields that M is

tree-like. �

In our next example the inverse limit is an indecomposable tree-like continuum

[5, Example 3.9] (original source is Example 3.4 of [4]). That it is tree-like is a

consequence of Corollary 4.1.
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Example 5.4. Let f : [0, 1] → C([0, 1]) be given by f(t) = 2t for 0 ≤ t <

1/2, f(1/2) = [0, 1], and f(t) = 2t − 1 for 1/2 < t ≤ 1. Then, lim
←−

f is an

indecomposable tree-like continuum.

In our next example the graph of the bonding function is homeomorphic to a

sin(1/x)-curve. This example was first studied by Scott Varagona and he showed

the inverse limit to be an indecomposable continuum [10, Theorem 3.2]. That it

is tree-like is a consequence of Corollary 4.1.

Example 5.5. Let f : [0, 1]→ C([0, 1]) be the function whose graph is the union

of straight line intervals joining (1/2n, 0) and (1/2n−1, 1) for all odd positive inte-

gers, straight line intervals joining (1/2n−1, 0) and (1/2n, 1) for all even positive

integers, and the straight line interval joining (0, 0) and (0, 1) (a graph homeomor-

phic to a sin(1/x)-curve). Then, lim
←−

f is an indecomposable tree-like continuum.

Our final example is actually a sequence of examples. Each inverse limit is an

infinite dimensional continuum and thus is not tree-like. However, as n increases,

the difficulty of determining that the hypothesis of Theorem 4.2 is satisfied in-

creases. The first term of the sequence is the function in Example 5.1. Recall

from Section 2 the notation G′
n = G′(f1, f2, . . . , fn). We use the single bonding

function version of this notation in the proof that the inverse limit in Example

5.6 is infinite dimensional. If f : [0, 1] → 2[0,1] and fi = f for each integer i,

1 ≤ i ≤ n, then we denote G′(f1, f2, . . . , fn) by G′
n.

(0,1)

(0,1-1/n)

(1/n,0)

(1,1-2/n)

(1-1/n,1-2/n)

Figure 2. The graph of the bonding function in Example 5.6

with n approximately 16
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Example 5.6. Let n be a positive integer. Let fn : [0, 1] → C([0, 1]) be the

function whose graph consists of four straight line intervals, one from (0, 1) to

(0, 1−1/n), one from (0, 1−1/n) to (1/n, 0), one from (1/n, 0) to (1−1/n, 1−2/n),

and one from (1−1/n, 1−2/n) to (1, 1−2/n). Then, lim
←−

fn is infinite dimensional.

(See Figure 2 for a graph of fn with n approximately 16).

Proof. Let n ∈ N and M = lim
←−

fn. Then, G′
n contains [1 − 1/n, 1] × {0} ×

{1/n} × · · · × {1 − 2/n} × [1 − 1/n, 1]. It follows that M contains a 2-cell. In

a similar manner we see that G′
2n contains a subset for which three factors that

are the interval [1− 1/n, 1]. In general, for each positive integer k, G′
kn contains

a subset having k + 1 factors that are the interval [1 − 1/n, 1] and all others are

degenerate. It follows that M contains a cell of each finite dimension and is thus

infinite dimensional. �
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