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Abstract. In this article we define the inverse limit of an inverse sequence

(X1, f1), (X2, f2), (X3, f3), . . . where each Xi is a compact Hausdorff space

and each fi is an upper semi-continuous function from Xi+1 into 2Xi . Con-

ditions are given under which the inverse limit is a Hausdorff continuum and

examples are given to illustrate the nature of these inverse limits.

1. Introduction

Inverse limits on closed subsets M of the unit square [0, 1] × [0, 1] were intro-
duced in [4]. In this article we generalize this definition to inverse limit sequences
(X1, f1), (X2, f2), (X3, f3), . . . where each Xi is a compact Hausdorff space and
each fi is an upper semi-continuous function from Xi+1 into 2Xi . Most of the
theorems from [4] extend directly to this case with minor modifications and these
extensions were announced in [4]. We also establish some mapping theorems
between these inverse limits, provide some examples to indicate the variety of
continua that can be produced, and provide some examples to answer some of
the questions raised in [4].

2. Definitions and Notation.

If Y is a compact Hausdorff space, then 2Y is the hyperspace of compact
subsets of Y . Let each of X and Y be a compact Hausdorff space and let f

be a function from X into 2Y . The function f is upper semi-continuous at the
point x ∈ X if and only if for each open set V in Y containing f(x), there is an
open set U in X containing x such that if u is in U , then f(u) ⊆ V . The graph
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G(f) of f is the set of all points (x, y) such that y is in f(x). A mapping, (or,
for short, a map) is a continuous function. Inverse limits are usually defined for
sequences (X1, f1), (X2, f2), (X3, f3), . . . such that for each i Xi is a topological
space and fi is a mapping from Xi+1 into Xi. Such a sequence is called an
inverse limit sequence and the mappings fi are called bonding maps. In this
article we consider sequences (X1, f1), (X2, f2), (X3, f3), . . . such that for each i

Xi is a compact Hausdorff space and fi is an upper semi-continuous function from
Xi+1 into 2Xi . We again refer to such a sequence as an inverse limit sequence and
the functions as bonding functions. In this case the inverse limit of the sequence
(X1, f1), (X2, f2), (X3, f3), . . . is a subspace of Π =

∏

i>0 Xi with the product
topology. The points of the inverse limit are the sequences x = (x1, x2, x3, . . .) in
Π such that xi is in fi(xi+1) for each i. If fi(x) is degenerate for each i and each
point x of Xi+1 then this definition reduces to the usual one. In this article we use
bold characters to denote sequences and roman or italic characters to denote the
terms of the sequence. Thus if (X1, f1), (X2, f2), (X3, f3), . . . is an inverse limit
sequence with upper semi-continuous bonding functions, then f = f1, f2, f3 . . .

and we denote the inverse limit by lim» f . As usual in inverse limits we use πi

to denote the projection of a point x in Π onto the ith coordinate space Xi so
that πi(x) = xi. In [4] a closed subset of the unit square whose x-projection is
[0, 1] was shown to be the graph of upper semi-continuous functions from [0, 1]
into 2[0,1]. The next theorem shows that this result extends to compact Hausdorff
spaces and that the graph G(f) of an upper semi-continuous function f : X → 2Y

is closed. As a consequence of the following theorem if X is a compact Hausdorff
space and M is a closed subset of X ×X, then there is an upper semi-continuous
function f : X → 2X such that G(f) = M so we may define lim» M to be lim» f
where f = f, f, f, . . ..

Theorem 2.1. Suppose each of X and Y is a compact Hausdorff space and M

is a subset of X × Y such that if x is in X then there is a point y in Y such that
(x, y) is in M . Then M is closed if and only if there is an upper semi-continuous
function f : X → 2Y such that M = G(f).

Proof. A proof that M is closed if M is the graph G(f) of an upper semi-
continuous function f from X into 2Y can be found in [3, Theorem 1, p. 175].

Assume that M is closed and for each x in X, define f(x) to be {y ∈ Y |
(x, y) ∈ M}. Since M is closed, f(x) is closed for each x in X. To see that f is
upper semi-continuous, suppose x is in X and V is an open set in Y containing
f(x). If f is not upper semi-continuous at x, then for each open set U containing
x there exist points z of U and (z, y) of M such that y is not in V . For each open
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set U containing x, denote by MU the set of all points (p, q) of M such that p

is in U and q is not in V . Since the collection of all the closed sets MU has the
finite intersection property and X ×Y is compact, there is a point (a, b) common
to all the sets MU . Since each MU is a subset of M , (a, b) belongs to M . Since x

is the only point common to all the sets U , a = x. Further, b is not in V . This
contradicts the fact that b belongs to f(x). £

3. Compact inverse limits

In this section we assume that (X1, f1), (X2, f2), (X3, f3), . . . is an inverse limit
sequence with upper semi-continuous bonding functions, and that Xi is a compact
Hausdorff space for each i. It will be convenient to introduce the following nota-
tion: if n is a positive integer, Gn denotes the set of all points x of Π =

∏

i>0 Xi

such that xi ∈ fi(xi+1) for i ≤ n.

Theorem 3.1. For each positive integer n, Gn is a non-empty compact set.

Proof. Since Π is compact it suffices to show that Gn is closed. Let x be a point
of Π that is not in Gn. There is a positive integer k ≤ n such that xk is not in
fk(xk+1). But fk(xk+1) is compact and closed since Xk is a compact Hausdorff
space. Thus there are mutually exclusive open sets O and U in Xk that contain
xk and fk(xk+1) respectively. As fk is upper semi-continuous, there is an open
set V containing xk+1 such that if t is in V , then fk(t) ⊆ U . From this it follows
that π−1

k (O) ∩ π−1
k+1(V ) is an open set in Π that contains x but no point of Gn

so Gn is closed and therefore compact. To see that Gn is non-empty, let y be a
point of Gn whose coordinates are defined inductively as follows. Select a point
yn+1 of Xn+1 and let yn be a point of fn(yn+1). Continue to inductively define
yn−i to be a point of fn−i(yn−i+1) for i < n. For i > n + 1 let yi be any point of
Xi. £

As an immediate consequence of Theorem 3.1 we have the result we sought in
the following theorem.

Theorem 3.2. K = lim» f is non-empty and compact.

Proof. G1, G2, G3, . . . is a nested sequence of non-empty compact sets in the
compact Hausdorff space Π, so

⋂

i>0 Gi is non-empty and compact. Clearly K =
⋂

i>0 Gi. £

If for each i and each point x of Xi there is a point y of Xi+1 such that
x ∈ fi(y) then for each point x1 of X1 there is a point x in the inverse limit
with π1(x) = x1. Thus, in this case, one does not need the preceding theorem to
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see that the inverse limit is non-empty. This is analogous to the case for inverse
limits with surjective mappings.

4. Connected inverse limits

We next turn our attention to conditions under which inverse limits are con-
nected. By a Hausdorff continuum we mean a compact, connected subset of a
Hausdorff space while by a continuum we mean a compact, connected subset of
a metric space. We begin by giving conditions under which G(f) is connected
when f is an upper semi-continuous function from the compact Hausdorff space
X into closed subsets of a compact Hausdorff space Y . The fact that G(f) is
connected does not imply that the the inverse limit with such a function as the
only bonding function is connected, even when each of X and Y is the interval
[0, 1]. See [4, Example 1] and Example 1 of Section 6 of this article.

Theorem 4.1. Suppose that each of X and Y is a compact Hausdorff space, X

is connected, f is an upper semi-continuous function from X into 2Y , and for
each x in X f(x) is connected. Then the graph G(f) of f is connected.

Proof. Recall that G(f) = {(x, y) ∈ X × Y | y ∈ f(x)} and assume that G(f) is
not connected. There are then two non-empty mutually separated sets H and K

with union G(f). The sets H and K are mutually separated if H∩K = K∩H = ∅.
If x is in X, then {x} × f(x) is a connected subset of G(f) and thus a subset
of one of H or K. Let H1 be the set of all points x of X such that {x} × f(x)
lies in H and let K1 be the points x of X such that {x} × f(x) lies in K. H1

and K1 are non-empty compact sets whose union is the connected set X so they
have a common point z. But this is impossible since {z} × f(z) would then be a
connected subset of both H and K. £

If M is a subset of the product X × Y of compact Hausdorff spaces, then
the inverse of M is the subset of Y × X consisting of all points (y, x) ∈ Y ×
X such that (x, y) is in M . We denote this inverse by M−1. The preceding
theorem for Hausdorff continuum-valued, upper semi-continuous functions has a
counterpart for upper semi-continuous functions whose graphs have inverses that
are the graphs of upper semi-continuous Hausdorff continuum-valued functions.

Theorem 4.2. Suppose that X and Y are compact Hausdorff spaces, Y is con-
nected, f is an upper semi-continuous function from X into 2Y such that for
each y in Y {x ∈ X | y ∈ f(x)} is a non-empty, connected set. Then G(f) is
connected.
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Proof. Let M = G(f)−1. Observe that M is closed if and only if M−1 is closed.
Since by Theorem 2.1 M−1 is the graph of an upper semi-continuous, Hausdorff
continuum-valued function from Y into 2X , M−1 is connected by Theorem 4.1.

£

For the next theorem it will be convenient to generalize the definition of the
graph G(f) of an upper semi-continuous function. If Y1, Y2, . . . , Ym+1 is a finite
collection of compact Hausdorff spaces and gi : Yi+1 → 2Yi is an upper semi-
continuous function for 1 ≤ i ≤ m, let G(g1, g2, . . . , gm) = {x ∈

∏m+1
i=1 Yi | xi ∈

gi(xi+1), 1 ≤ i ≤ m}. If m = 1, then G(g1) is the graph of g1.

Theorem 4.3. Suppose X1, X2, . . . , Xn+1 is a finite collection of Hausdorff con-
tinua and f1, f2, . . . , fn is a finite collection of upper semi-continuous functions
such that fi : Xi+1 → 2Xi for 1 ≤ i ≤ n. If fi(x) is connected for each x in Xi+1

and each i, 1 ≤ i ≤ n, then G(f1, f2, . . . , fn) is connected.

Proof. We proceed by induction on the number of arguments for G. The case
that there is only one argument is Theorem 4.1. Suppose the theorem holds for
n arguments and let f1, f2, . . . , fn+1 be n + 1 arguments for G. By the inductive
hypothesis, G(f2, . . . , fn+1) is connected. If H and K are closed sets whose union
is G(f1, . . . , fn+1) and h : G(f1, . . . , fn+1) → G(f2, . . . , fn+1) is the continuous
transformation defined by h(x1, . . . , xn+1) = (x2, . . . , xn+1), then h(H ∪ K) =
G(f2, . . . , fn+1). Thus, there is a point p belonging to h(H) and h(K). Then, {x ∈
G(f1, . . . , fn+1) | x1 ∈ f1(p2) and xi = pi for 2 ≤ i ≤ n + 1} is a connected set
intersecting both H and K. Consequently, H and K are not mutually separated.

£

The next theorem is an immediate consequence of Theorem 4.3.

Theorem 4.4. Assume that for each i Xi is a Hausdorff continuum and for each
x ∈ Xi+1 fi(x) is connected. Then for each positive integer n, Gn is connected.

Proof. Since Gn = G(f1, f2, . . . , fn)×Xn+2 ×Xn+3 × · · · this follows immedi-
ately from Theorem 4.3. £

Recall that Theorem 4.1 and Theorem 4.2 were closely related, one being for
Hausdorff continuum-valued upper semi-continuous functions and the other for
functions whose graphs had inverses that were the graphs of Hausdorff continuum-
valued upper semi-continuous functions. The next two theorems bear a similar
relation to Theorem 4.3 and Theorem 4.4.
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Theorem 4.5. Suppose X1, X2, . . . , Xn+1 is a finite collection of Hausdorff con-
tinua and f1, f2, . . . , fn is a finite collection of upper semi-continuous functions
such that fi : Xi+1 → 2Xi for 1 ≤ i ≤ n. If for each i, 1 ≤ i ≤ n and each y of
Xi, {x ∈ Xi+1 | y ∈ fi(x)} is a non-empty, connected set, then G(f1, f2, . . . , fn)
is connected.

Proof. We proceed by induction. The case n = 1 is Theorem 4.2. Assume
the theorem holds for n, and let f1, . . . , fn+1 be a collection of n + 1 argu-
ments for G. If H and K are closed sets whose union is G(f1, . . . , fn+1) and
h : G(f1, . . . , fn+1) → G(f1, . . . , fn) is the continuous transformation defined by
h(x1, . . . , xn+1) = (x1, . . . , xn), then h(H) ∪ h(K) = G(f1, . . . , fn), so there is a
point p belonging to h(H) and h(K). Then, {x ∈ G(f1, . . . , fn+1) | xi = pi, 1 ≤
i ≤ n, and xn ∈ fn(xn+1)} is a connected set intersecting both H and K. Thus
H and K are not mutually separated. £

As an immediate corollary we have the following theorem.

Theorem 4.6. Assume that for each i Xi is a Hausdorff continuum, fi : Xi+1 →
2Xi

is an upper semi-continuous function, and for each xi ∈ Xi {y ∈ Xi+1 | xi ∈
fi(y)} is a non-empty, connected set. Then for each positive integer n, Gn is
connected.

As a consequence of the preceding theorems, in the next two theorems we have
the results we sought in this section.

Theorem 4.7. Suppose that for each i, Xi is a Hausdorff continuum, fi : Xi+1 →
2Xi

is an upper semi-continuous function, and for each x in Xi+1, fi(x) is con-
nected. Then lim» f is a Hausdorff continuum.

Proof. For each i, we have from Theorem 3.1 that Gi is compact and from
Theorem 4.4 that Gi is connected. So lim» f =

⋂

i>0 Gi is a Hausdorff continuum.
£

Theorem 4.8. Suppose that for each i Xi is a Hausdorff continuum, fi : Xi+1 →
2Xi

is an upper semi-continuous function, and for each x ∈ Xi {y ∈ Xi+1 | x ∈
fi(y)} is a non-empty, connected set. Then lim» f is a Hausdorff continuum.

5. Mapping theorems

Suppose X1, X2, X3, . . . is a sequence of compact Hausdorff spaces and
n1, n2, n3, . . . is an increasing sequence of positive integers. The function F :
∏

i>0 Xi →
∏

i>0 Xni given by F (x1, x2, x3, . . .) = (xn1 , xn2 , xn3 , . . .) is con-
tinuous. If, in addition, for each i, fi : Xi+1 → Xi is a mapping and



INVERSE LIMITS OF UPPER SEMI-CONTINUOUS SET VALUED FUNCTIONS 125

gi = fni ◦ fni+1 ◦ · · · ◦ fni+1−1, then it is well known that the restriction of
this map to lim» f is a homeomorphism onto lim» g.

For inverse limits of the type considered in this paper, the situation is sim-
ilar but F | lim» f need not be a homeomorphism. If X, Y , and Z are com-
pact Hausdorff spaces and f : X → 2Y and g : Y → 2Z are upper semi-
continuous functions, we define g ◦ f : X → 2Z by (g ◦ f)(x) = {z ∈ Z |
there is a point y of Y such that y ∈ f(x) and z ∈ f(y)}. We include the fol-
lowing theorem for the sake of completeness.

Theorem 5.1. Suppose X1, X2, X3, . . . is a sequence of compact Hausdorff spaces
and fi : Xi+1 → 2Xi is an upper semi-continuous function for each positive integer
i. If n1, n2, n3, . . . is an increasing sequence of positive integers let g1, g2, g3, . . . be
the sequence such that gi = fni ◦fni+1 ◦ · · · ◦fni+1−1. If F :

∏

i>0 Xi →
∏

i>0 Xni

given by F (x1, x2, x3, . . .) = (xn1 , xn2 , xn3 , . . .) then F | lim» f is a continuous
transformation from lim» f onto lim» g.

Example 3 of the next section shows that the mapping of inverse limits from
Theorem 5.1 need not be a homeomorphism, even in the special case where each
fi = f and each gi = f ◦ f .

Suppose X1, X2, X3, . . . and Y1, Y2, Y3, . . . are sequences of compact Hausdorff
spaces and, for each positive integer i, fi : Xi+1 → 2Xi and gi : Yi+1 → 2Yi are
upper semi-continuous functions. Suppose further that, for each positive integer
i, ϕi : Xi → Yi is a mapping. The function Φ :

∏

i>0 Xi →
∏

i>0 Yi given by
Φ(x) = (ϕ1(x1), ϕ2(x2), ϕ3(x3), . . .) is continuous and Φ is one-to-one if each ϕi

is one-to-one. These observations lead to the following theorem.

Theorem 5.2. Suppose X1, X2, X3, . . . and Y1, Y2, Y3, . . . are sequences of com-
pact Hausdorff spaces and, for each positive integer i, fi : Xi+1 → 2Xi and
gi : Yi+1 → 2Yi are upper semi-continuous functions. Suppose further that, for
each positive integer i, ϕi : Xi → Yi is a mapping such that ϕi ◦ fi = gi ◦ ϕi+1.
The function ϕ : lim» f → lim» g given by ϕ(x) = (ϕ1(x1), ϕ2(x2), ϕ3(x3), . . .) is
continuous. Furthermore, ϕ is one-to-one (and surjective) if each ϕi is one-to-one
(and surjective).

Proof. In light of the observations preceding the statement of this theorem,
since ϕ = Φ | lim» f there are only a couple of things to check. First, we need
to show that if x is in lim» f then ϕ(x) is in lim» g. This involves checking
that ϕi(xi) ∈ gi(ϕi+1(xi+1)) for each positive integer i. However, this fol-
lows from the fact that ϕi(fi(xi+1)) = gi(ϕi+1(xi+1)). So, ϕ(lim» f) is a sub-
set of lim» g. The only other thing to check is that ϕ is surjective whenever
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each ϕi is one-to-one and surjective. Suppose that y is in lim» g. The point
x = (ϕ−1

1 (y1), ϕ−1
2 (y2), ϕ−1

3 (y3), . . .) belongs to
∏

i>0 Xi and ϕ(x) = y. Thus,
we only need to see that x is in lim» f . To this end, let i be a positive inte-
ger and consider fi(xi+1). Since yi+1 = ϕi+1(xi+1) and yi ∈ gi(yi+1), we have
yi ∈ gi(ϕi+1(xi+1)) = ϕi(fi(xi+1)). Therefore, there is a point t of fi(xi+1) so
that ϕi(t) = yi. Since ϕi is one-to-one, t = xi. £

Suppose X is a compact Hausdorff space. If f : X → 2X and g : X → 2X

are upper semi-continuous functions, f and g are topologically conjugate provided
there is a homeomorphism h such that h(X) = X and h ◦ f = g ◦ h. We have the
following corollary to Theorem 5.2.

Theorem 5.3. Suppose X is a compact Hausdorff space. If f : X → 2X and
g : X → 2X are topologically conjugate upper semi-continuous functions, then
lim» f is homeomorphic to lim» g.

6. The special case where each Xi = [0, 1].

In this section we provide some examples in the special case where each Xi is
I = [0, 1] and we have a single bonding function. If f is an upper semi-continuous
function from I into 2I , then lim» f will denote the inverse limit of the inverse
sequence (I, f), (I, f), (I, f), . . . . In view of Theorem 2.1 we can consider closed
subsets of I×I whose projection on the x-axis is I since each such set is the graph
of an upper semi-continuous function. If M is a closed subset of I × I whose
projection on the x-axis is I and f is the corresponding upper semi-continuous
function, then M = G(f). In the following examples we follow the convention
used in [4], and define lim» M to be lim» f . In this case lim» M is a subset of the
Hilbert cube Q.

In [4] an example was given of a closed subset M of I × I such that M is
connected but lim» M is not connected. In that example the projection of M on
the y-axis was not I. The following provides an example where the projection on
the y-axis is I.

Example 1. Let M be the union of the four straight line intervals, I × {0},
{1} × I, the interval from (0, 0) to (1/4, 1/4), and the interval from (3/4, 1/4) to
(1, 1).

Let N be the set of all points p of K = lim» M such that p1 = p2 = 1/4 and
p3 = 3/4. Let x be a point of N . Let R = R1 × R2 × R3 × Q be the region in
Q where R1 = R2 = (1/8, 3/8) and R3 = (5/8, 7/8), and note that R contains x.
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Assume that the point y is in R∩K. Then y1 and y2 are in (1/8, 3/8). It follows
that y2 ≤ 1/4. But if y2 < 1/4, then y3 = 1 and y is not in R. We conclude that
R contains no point not in N and that N and K−N are mutually separated and
K is not connected.

To illustrate the variety of continua one can obtain we include a simple example
whose inverse limit is a fan.

Example 2. Let M be the union of the graph of the identity function and the
interval I × {0}.

Note that if p ∈ K = lim» M and for some n, pn > 0, then pj = pn for all
j > n. For each positive integer n, let Kn be the set of all points p ∈ lim» M such
that pj = 0 for j < n and pj = pn > 0 for j ≥ n. The closure of Kn is an arc
of length 1/2n−1 having one endpoint at (0, 0, 0, . . . ). Moreover no two of these
arcs intersect except at their common endpoint and lim» M =

⋃

i>0 Ki.

It follows from Theorem 5.1 of Section 5 that for an upper semi-continuous
function f : I → 2I , there is a map from lim» f onto lim» f2. It is well known that
if f is a map from I into I, then lim» f is homeomorphic to lim» f2. The following
example shows that this fact does not generalize.

Example 3. Let M be the union of the three straight line intervals I × {1/2},
{1} × [0, 1/2] and the interval with endpoints (0, 1) and (1/2, 1/2).

If f is the upper semi-continuous function determined by M , then K = lim» f
contains a triod which is the union of the three arcs which are described below. Let
A1 be the set of all points of K whose first coordinate is in the half open interval
(1/2, 1]. The closure of A1 is an arc from (1, 0, 1, 0, . . .) to (1/2, 1/2, 1, 0, 1, 0, . . .).
Let A2 be the set of all points of K whose first two coordinates are 1/2 and
whose third coordinate is in the half open interval (1/2, 1]. The closure of A2 is
an arc from (1/2, 1/2, 1/2, 1/2, 1, 0, 1, 0, . . .) to (1/2, 1/2, 1, 0, 1, 0, . . .). Finally let
A3 be the set of all points of K whose first coordinate is 1/2 and whose second
coordinate is in the half open interval [0, 1/2). The closure of A3 is an arc from
(1/2, 0, 1, 0, 1, 0, . . .) to (1/2, 1/2, 1, 0, 1, 0, . . .). The union of the closures of A1,
A2, and A3 is a simple triod contained in K.

On the other hand, f ◦ f is the union of the three straight line intervals,
{0} × [0, 1/2], I × {1/2} and {1} × [1/2, 1]. K = lim» f ◦ f is a continuum by
Theorem 4.7. We will show that K is an arc with endpoints a = (0, 0, 0, . . .) and
b = (1, 1, 1, . . .). Let p be a point of K different from a and b. There is an n such
that pn is neither 0 nor 1. If pn 6= 1/2 then K∩π−1

n (pn) is degenerate and separates
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K into the two mutually separated sets K ∩ π−1
n ([0, pn)) and K ∩ π−1

n ((pn, 1]).
If pn = 1/2 and pn+1 ∈ {0, 1} then K ∩ π−1

n (pn) is degenerate and a separating
point (i.e., cut point) of K. Thus we may assume that pn+1 is neither 0 nor 1
and again conclude that K ∩π−1

n+1(pn+1) is a separating point unless pn+1 = 1/2.
Continuing this process, the only point remaining to consider is the constant
sequence (1/2, 1/2, 1/2, . . .). But this point also is clearly a separating point of
K. Thus K is a continuum having at most two non-separating points and is an
arc. See [1, Theorem 1-18, p. 49] and [1, Theorem 2-27, p. 54].

We next provide an example of a closed set M in I2 such that if f is the
upper semi-continuous function determined by M , then not only is lim» f not
homeomorphic to lim» f ◦ f but it also is a well known example of a universal
continuum. That is, it is a continuum with the property that if K is a continuum,
then K is the image of a subcontinuum of M under a continuous mapping.

Example 4. Let M be the union of the four straight line intervals joining the
point (0, 1/2) to (1/2, 1), (1/2, 1) to (1, 1/2), (1, 1/2) to (1/2, 0), and (1/2, 0) to
(0, 1/2).

Note that the four arcs whose union is M form a diamond in I2. Label these
arcs Ai for i ∈ {1, 2, 3, 4} in a clockwise direction so that A1 ⊂ [0, 1/2]×[1/2, 1] and
A4 ⊂ [0, 1/2]× [0/1/2]. Let f be the upper semi-continuous function determined
by M and let K = lim» f . The set K contains a simple closed curve which is the
union of the four arcs Bi for i ∈ {1, 2, 3, 4} determined as follows. If i = 2 or
i = 4, Bi is the set of all points p ∈ K such that for each n, (pn+1, pn) ∈ Ai.
If i = 1 or 3, then Bi is the set of all points p ∈ K such that for each odd n,
(pn+1, pn) ∈ Ai and for each even n (pn+1, pn) ∈ Ai+2(mod4).

On the other hand, the graph of f ◦ f is the union of the two arcs, one from
(0, 0) to (1, 1) and the other from (0, 1) to (1, 0) and lim» f ◦ f is homeomorphic
to the cone over a Cantor set as was shown in [4].

Perhaps of more interest as indicated above is the continuum K = lim» f . K

contains two mutually exclusive Cantor sets, C0 consisting of all points p of K

such that pn = 1/2 if n is even and C1 consisting of all points p of K such that
pn = 1/2 if n is odd. If a is a point of C0 and b is a point of C1, then for each
n (an+1, an) and (bn+1, bn) are endpoints of the arc Ain where in ∈ {1, 2, 3, 4}.
The set of all points x of K such that (xn+1, xn) is in Ain is an arc joining a
and b. K is the union of all these arcs, no two of which have a point in common
that is not an endpoint. This is the example of a universal continuum given by
Hurewicz in [2]. In fact, Hurewicz showed that if C is a continuum then there
exist a subcontinuum H of K and a monotone map of H onto C.
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In [4] it was conjectured that for closed subsets of I× I the inverse limit would
be either 1-dimensional or infinite dimensional. This is not only wrong, but for
every positive integer n there is a closed subset of I×I such that the corresponding
inverse limit is n-dimensional. The next example provides a closed subset of I2

whose inverse limit is 2-dimensional. We have been unable to find an example of
a closed subset M of I2 such that lim» M is a 2-cell.

Example 5. Let M consist of the union of the four straight line intervals,
[0, 1/2]× {0}, {1/2} × [0, 1/2], [1/2, 1]× {1/2} and {1} × [1/2, 1].

As usual, let f be the upper semi-continuous function determined by M and
K = lim» f . Here K is the union of a 2-cell D and an arc A. To identify D, let
i, j be positive integers with j > i + 1 and let Di,j be the 2-cell {p ∈ K | pi ∈
[0, 1/2], pj ∈ [1/2, 1], pk = 0 if k < i, pk = 1/2 if i < k < j, pk = 1 if k > j}.
Let D be the 2-cell that is the closure of the union of all the 2-cells Di,j where
i ≥ 1 and j > i + 1. Let A = {p ∈ K | p1 ∈ [1/2, 1], pk = 1 if k > 1} ∪
{p ∈ K | p1 = 1/2, p2 ∈ [1/2, 1], pk = 1 if k > 2}. Then, K = D ∪ A and
D ∩A = {(1/2, 1/2, 1, 1, . . .)}.

One can alter the previous example to produce an inverse limit of dimension
n for any choice of n. For example, to produce an inverse limit of dimension 3
add a second stairstep between 1/4 and 1/2. That is, let M be the union of the
intervals [0, 1/4] × {0}, {1/4} × [1/4, 1/2], [1/4, 1/2] × {1/4}, {1/2} × [1/4, 1/2],
[1/2, 1]×{1/2} and {1}× [1/2, 1]. Additional stairsteps can be added to produce
higher dimensional inverse limits. We understand from private correspondence
that Mr. Antonio Peláez has independently produced different examples of closed
subsets of I × I with n-dimensional inverse limits.
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