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Abstract. Itzok Banič and Judy Kennedy recently drew atten-
tion to a natural but largely unexplored field of study in the theory
of inverse limits with set-valued functions, namely using bonding
functions having graphs that are arcs. At the end of that paper they
pose a question: If f : [0, 1] → 2[0,1] is an upper semi-continuous
function such that G(fn) is connected for each n and G(f) is an arc,
is lim←−f connected? In this paper we provide a negative answer to
that question. We also include some additional examples, a shape
theorem due to Van Nall, and pose several questions concerning
inverse limits with functions whose graph is an arc.

1. Introduction

One of the fundamental questions in the theory of inverse limits with
upper semi-continuous set-valued functions is the question of the con-
nectedness of such an inverse limit. One known characterization of con-
nectedness of inverse limits with set-valued functions is Theorem 1.1, see
[10, Theorem 116, p. 85] where it is shown (without using surjectivity)
that connectivity of the inverse limit follows from the connectedness of
certain “approximations” (specifically, the approximations are the prod-
uct of sets G′n from Theorem 1.1 and the Hilbert cube). As can be seen
from the function f : [0, 1] → 2[0,1] given by f(t) = 0 for 0 ≤ t < 1 and
f(t) = {0, 1/2}, without surjectivity an inverse limit can be connected
even if the sets G′n from Theorem 1.1 are not all connected, [5, Example
1.8, pp. 8–9].

Theorem 1.1. Suppose X1, X2, X3, . . . a sequence of Hausdorff continua
and fi : Xi+1 → 2Xi is a surjective upper semi-continuous function for
each positive integer i. Then, lim←−f is connected if and only if G′n = {x ∈
X1×X2×· · ·×Xn+1 | xi ∈ fi(xi+1) for each positive integer i, 1 ≤ i ≤ n}
is connected for each positive integer n.
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However, this theorem is often difficult to implement in practice, so
the search for sufficient conditions on the nature of the bonding functions
to ensure connectivity of the inverse limit continues. In particular, we
are interested in conditions that are simple to verify. For instance, it is
known that such inverse limits are Hausdorff continua in case the factor
spaces are Hausdorff continua and the bonding functions are upper semi-
continuous with connected values [10, Theorem 126, p. 90]. Numerous
examples show that, in general, the hypothesis that the bonding functions
have connected values cannot be weakened even if the factor spaces are all
the interval [0, 1]. Specifically, there exists a single surjective set-valued
bonding function on [0, 1] with a connected graph (its graph happens to
be an arc) having an inverse limit that is not connected [10, Example
114, p. 83]. We include another such example in Example 4.4 below.
Without the surjectivity of the bonding function, an inverse limit with
a set-valued function having a graph that is an arc can even be totally
disconnected (see Example 4.1). Much research has been directed toward
determining sufficient conditions on the bonding functions on a continuum
(particularly on [0, 1], and even with a single bonding function) to ensure
that the inverse limit is a continuum.

Some positive connectivity results for a single surjective upper semi-
continuous function on [0, 1] include two theorems due to Van Nall.

Theorem 1.2. [5, Theorem 2.3, p. 16] Suppose f : [0, 1] → 2[0,1] is a
surjective upper semi-continuous function. Then, lim←−f is connected if
and only if lim←−f−1 is connected.

Theorem 1.3. [5, Theorem 2.11, p. 25] If f is a surjective upper semi-
continuous function on [0, 1] with a connected graph that is a union of the
graphs of a collection of upper semi-continuous functions on [0, 1] each
having connected values then lim←−f is connected.

On the other hand, Nall observed that if G(fn) fails to be connected
for some positive integer n, then the inverse limit is not connected [5, The-
orem 2.3, p. 16]. Examples show that there are functions for which Nall’s
condition can be difficult to check; specifically, if n is a positive integer
there is a function f : [0, 1]→ 2[0,1] such that G(fn) is not connected but
G(f i) is connected for each positive integer i < n [5, Example 2.25, p.
42]. Other examples show that there are functions having a nonconnected
inverse limit but for which G(fn) is connected for each positive integer n
[5, Examples 2.26 and 2.27] (also, Example 4.2 below).

In a recent article, Iztok Banič and Judy Kennedy [1], considered con-
nectivity questions for inverse limits on [0, 1] with a single set-valued bond-
ing function whose graph is an arc. Their paper is perhaps the first in
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the literature to concentrate on this particular class of set-valued bonding
functions. In their paper, Banič and Kennedy asked whether an inverse
limit on [0, 1] is connected in case there is a single bonding function hav-
ing a graph that is an arc and G(fn) is connected for each n. In Example
4.2 of this paper we provide a negative answer this question. Beyond
that example, however, we believe it is important to draw attention to
the compacta that are obtained as inverse limits on [0, 1] with set-valued
functions having graphs that are arcs.

2. Definitions and Notation

A compactum is a compact metric space; a continuum is a connected
compactum. If X is a compactum, 2X denotes the collection of all com-
pact subsets of X. If each of X and Y is a compactum, a function
f : X → 2Y , herein denoted f : X ↗ Y , is said to be upper semi-
continuous at the point x of X provided that if V is an open subset of
Y that contains f(x) then there is an open subset U of X containing x
such that if t is a point of U then f(t) ⊆ V . A function f : X → 2Y is
called upper semi-continuous provided it is upper semi-continuous at each
point of X. If f : X → 2Y is a set-valued function, by the graph of f ,
denoted G(f), we mean {(x, y) ∈ X × Y | y ∈ f(x)}; if f : X ↗ Y and
g : Y ↗ Z, then g ◦ f : X ↗ Z denotes the function given by z ∈ g ◦ f(x)
if and only if there is a point y of Y such that y ∈ f(x) and z ∈ g(y). It
is known that if X and Y are compacta and M is a subset of X ×Y such
that X is the projection of M to its set of first coordinates then M is
closed if and only if M is the graph of an upper semi-continuous function
[10, Theorem 2.1]. If s = s1, s2, s3, . . . is a sequence, we normally denote
the sequence in boldface type and its terms in italics. Suppose X is a
sequence of compacta and fn : Xn+1 ↗ Xn is an upper semi-continuous
function for each n ∈ N. By the inverse limit of f , denoted lim←−f , we
mean {x ∈

∏
i>0Xi | xi ∈ fi(xi+1) for each positive integer i}. If the

sequences X and f are constant sequences (i.e., there are a compactum
X and an upper semi-continuous function f : X ↗ X such that Xi = X
and fi = f for each i ∈ N), we say that lim←−f is an inverse limit with only
one bonding function. For the most part in this paper, we are concerned
with inverse limits with only one bonding function where the compactum
X is the interval [0, 1]. If X is a compactum and M is a subset of X, for
convenience, we denote the product of countably many copies of M by
M∞. If {Xa | a ∈ D} is a collection of sets and A is a subset of D, we
denote by πA the natural projection of

∏
a∈DXa onto

∏
a∈AXa.

A set traditionally used in the proof that lim←−f is nonempty and com-
pact is {x ∈

∏
k>0Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. Because this set
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was originally denoted Gn, we adopt and use throughout this article the
notation G′n = {x ∈

∏n+1
k=1 Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n} for the

projection of Gn into the product of the first n + 1 factor spaces, i.e.,
G′n = π{1,2,...,n+1}(Gn). These sets G′n are precisely the “approximations”
used in Theorem 1.1 above whose connectedness characterizes the con-
nectedness of the inverse limit. Alternatively, at times, we may denote
G′n by G′(f1, f2, . . . , fn).

It is becoming increasingly more evident that understanding the topol-
ogy of inverse limits is rather closely tied to understanding the sets G′n.
Beyond their use in the proof of the existence and compactness of the
inverse limit, one indication of their utility lies in the following theorem
that allows us to employ the powerful tools of inverse limits with map-
pings in their study. The theorem is little more than an observation and
is quite easy to prove, but we refer the reader to [7, Section 4, pp. 59–60]
for a more complete treatment. See also [9].

Theorem 2.1. Suppose X is a sequence of compacta and f : Xi+1 ↗ Xi

is a surjective upper semi-continuous function for each positive integer
i. Then, lim←−f is homeomorphic to the inverse limit on the sequence of
spaces X1, G

′(f1), G
′(f1, f2), G

′(f1, f2, f3), . . . with bonding functions that
are projection mappings.

From this theorem it follows that properties of the factor spaces that
are preserved in inverse limits with mappings are properties that an in-
verse limit with upper semi-continuous bonding functions inherits from
the spaces G′n. Such properties include, but are not limited to, chainabil-
ity, treelikeness, atriodicity, acyclicity, dimension less than or equal to k,
irreducibility, trivial shape, and indecomposability.

We close this section with a theorem of M. M. Marsh [12, Theorem 2.1,
p. 244]. For the convenience of the reader we state and prove Marsh’s
theorem as we make use of it on [0, 1].

Theorem 2.2. (Marsh) Suppose f : [0, 1]↗ [0, 1] and g : [0, 1]→ [0, 1]
is a mapping such that g−1 ⊆ G(f). If n is a positive integer, lim←−f

contains a homeomorphic copy of G′n.

Proof. The function h : G′n → lim←−f given by h(x) = (x1, x2, . . . , xn+1,
g(xn+1), g

2(xn+1), . . . ) is a homeomorphism. �

3. Trivial shape

In this section we depart from our theme of inverse limits with set-
valued functions having graphs that are arcs and prove a general result
due to Van Nall. In [3, Theorem 2] W. Charatonik and R. Roe showed that
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trivial shape is preserved in inverse limits on finite-dimensional continua
having trivial shape using upper-semicontinuous bonding functions that
have values that are continua with trivial shape. In private correspon-
dence with the author Nall observed that by modifying their techniques
the condition that the bonding functions have values that are continua
with trivial shape can be replaced by the condition that the bonding
functions have inverses with values that are continua with trivial shape.
Because of its potential importance, we provide a proof of Nall’s theorem.
This proof is comparable to the proof provided by Charatonik and Roe.
We begin with a lemma.

Lemma 3.1. Suppose X and Y are finite dimensional continua, f : X ↗
Y is a surjective upper semi-continuous function, A is a subcontinuum of
Y , and f−1(y) is a continuum with trivial shape for each y in A. If
B = {(y, x) ∈ A×X | x ∈ f−1(y)}, then A and B have the same shape.

Proof. Note that π1 : B � A is a mapping. Choose y in A and define
h : f−1(y) � π−11 (y) by h(t) = (y, t) for each t in f−1(y). Then, h is 1−1
and continuous so h is a homeomorphism. Thus, π−11 (y) has trivial shape
for each y in Y . By a theorem of R. B. Sher [14, Theorem 11, p. 86], A
and B have the same shape. �

In Lemma 3.1 if the set A is Y then the set B is G(f−1). Recalling
that G(f) and G(f−1) are homeomorphic we have the following.

Theorem 3.2. Suppose X and Y are finite dimensional continua, f :
X ↗ Y is a surjective upper semi-continuous function and f−1(y) is a
continuum with trivial shape for each y in Y . If Y has trivial shape, then
G(f) and G(f−1) have trivial shape.

Theorem 3.3. Suppose X is a sequence of finite-dimensional continua
with trivial shape, fi : Xi+1 ↗ Xi is a surjective upper semi-continuous
function for each positive integer i, and f−1i (x) is a continuum with trivial
shape for each positive integer i and each x ∈ Xi. Then, G′(f1, f2, . . . , fn)
has trivial shape for each positive integer n.

Proof. Because G′(f1) = G(f−11 ), by Theorem 3.2, G′(f1) has trivial
shape.

Inductively, suppose n is a positive integer such that G′(f1, f2, . . . , fn)
has trivial shape. Let f : G′(f1, f2, . . . , fn+1) → G′(f1, f2, . . . , fn) be
the projection mapping given by f(x) = (x1, x2, . . . , xn+1). Choose y =
(y1, y2, . . . , yn+1) in G′(f1, f2, . . . , fn) and note that h : f−1n+1(yn+1) �
f−1(y) given by h(t) = (y1, y2, . . . , yn+1, t) is a homeomorphism. Thus,
f−1(y) has trivial shape for each y ∈ G′(f1, f2, . . . , fn) so Sher’s theorem
[14] yields that G′(f1, f2, . . . , fn+1) has trivial shape. �
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(1,1/2)(1/2,1/2)

(0,3/4)

(1/2,1) (1,1)

Figure 1. The graph of the Mahavier bonding function
f in Example 4.1.

The following theorem now follows from Theorem 3.3 and Theorem
2.1.

Theorem 3.4. (Nall) Suppose X is a sequence of finite-dimensional
continua with trivial shape and fi : Xi+1 ↗ Xi is upper semi-continuous
for each positive integer i. If f−1i (y) is a continuum with trivial shape for
each i ∈ N and each y ∈ Y , then lim←−f has trivial shape.

4. Examples

In his article introducing inverse limits with set-valued functions, Bill
Mahavier included an example of a function having an arc as its graph
but whose inverse limit is a Cantor set [11, Example 2]. For completeness
we sketch a proof.

Example 4.1. (Mahavier) Let f : [0, 1] ↗ [0, 1] be the upper semi-
continuous function whose graph consists of four straight line intervals,
one from (0, 3/4) to (1/2, 1), one from (1/2, 1) to (1, 1), one from (0, 3/4)
to (1/2, 1/2), and one from (1/2, 1/2) to (1, 1/2). Then G(f) is an arc
and lim←−f is a Cantor set. (See Figure 1 for the graph of f).

Proof. It is not difficult to see that lim←−f contains the Cantor set {1/2, 1}∞.
Moreover, if x ∈ lim←−f , no coordinate of x is less than 1/2; for this reason
it follows that no coordinate of x can be strictly between 1/2 and 1. Thus
lim←−f = {1/2, 1}∞. �
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(1,1/2)

(1/2,0)(0,0)

(1,1)

(1/4,1/4)

(3/4,3/4)

(1,1/2)

(1/2,0)(0,0)

(1,1)

(1/4,1/4)

(3/4,3/4)

(1,0)

Figure 2. The graph of the bonding function f (left)
and its composition with itself f2 (right) in Example 4.2.

For the function f in Example 4.1, the graph of f2 is not connected;
G(f2) = ([0, 1] × {1/2}) ∪ ([0, 1] × {1}). The following example is a
surjective upper semi-continuous function on [0, 1] having a graph that is
an arc and all compositions have connected graphs but its inverse limit is
not connected. This answers Question 5.1 of [1]. This example is adapted
from an example due to Greenwood and Kennedy [5, Example 2.27, p. 45].
The proof that the inverse limit in Example 4.2 is not connected is much
the same as that given in [5] but we include a proof here for completeness.
Neither their original example nor its modification presented here has a
connected inverse limit. Also, it may be of interest that if f is the function
in Example 4.2, fn for n > 1 is the original Greenwood and Kennedy
function (pictured on the right as the graph of f2 in Figure 2).

Example 4.2. Let f : [0, 1] ↗ [0, 1] be the upper semi-continuous func-
tion whose graph consists of five straight line intervals, one from (1/4, 1/4)
to (0, 0), one from (0, 0) to (1/2, 0), one from (1/2, 0) to (1, 1/2), one from
(1, 1/2) to (1, 1), and one from (1, 1) to (3/4, 3/4). Then G(f) is an arc
and G(fn) is connected for each positive integer n but lim←−f is not con-
nected. (The graph of f is depicted on the left in Figure 2).

Proof. We show thatG′3 is not connected by showing that p = (1/4, 1/4,
3/4, 3/4) is an isolated point of G′3 and apply Theorem 1.1. Let U =
(1/8, 3/8)× (1/8, 3/8)× (5/8, 7/8)× (5/8, 7/8) and note that p ∈ U ∩G′3.
Suppose x ∈ U ∩ G′3. Because x1 ∈ (1/8, 3/8), x1 ∈ f(x2), and x2 ∈
(1/8, 3/8), it follows that x2 ∈ (1/8, 1/4]. Because x2 ∈ (1/8, 1/4],
x2 ∈ f(x3), and x3 ∈ (5/8, 7/8), we see that x3 ∈ (5/8, 3/4]; because
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x3 ∈ f(x4) and x4 ∈ (5/8, 7/8) it follows that x4 = 3/4. Thus, x3 = 3/4
so x2 = 1/4 and x1 = 1/4 so x = p. Therefore, p is an isolated point of
G′3 and so G′3 is not connected.

It is not difficult to see that G(f2) is the graph of the original Green-
wood and Kennedy function and that, for n > 2, G(fn) = G(f2). Thus,
G(fn) is connected for each positive integer n. �

4.1. Triods. Continua that are inverse limits with set-valued functions
having graphs that are arcs can contain triods. Such is the case in our
next example, perhaps the simplest such example, where the inverse limit
is a fan. Although this example has appeared in print many times [5,
Example 2.13], we include it here not only because the graph is an arc
and the inverse limit contains triods but also because it has some addi-
tional features that we note as motivation for some of our stated problems
(including Problems 5.10 and 5.17). Other examples using graphs that
are arcs include an inverse limit that contains a 2-cell [5, Example 5.3] as
well as an infinite dimensional inverse limit [5, Example 2.3] and a one-
dimensional inverse limit containing uncountably many mutually exclu-
sive triods [5, Example 2.15]. Further such examples include [5, Example
3.11, pp. 57–58] and [7, Example 7.1].

Example 4.3. Let f : [0, 1] ↗ [0, 1] be the upper semi-continuous func-
tion given by f(t) = {0, t} for each t ∈ [0, 1]. Then, G(f) is an arc but
lim←−f and lim←−f−1 are treelike continua that contain triods.

Proof. LetM = lim←−f and N = lim←−f−1. The graph of f is clearly an arc.
Because f−1 is interval valued, N is a continuum [5, Theorem 2.7, p. 18].
Thus, M is a continuum [5, Theorem 2.3, p. 16]. Both inverse limits are
one-dimensional because neither bonding function contains both a vertical
and a horizontal interval [13, Theorem 5.5, p. 1332]. Treelikeness for
lim←−f−1 now follows from its trivial shape [3]. Because f−1 is continuum-
valued, by Theorem 3.4, lim←−f has trivial shape, and, thus, lim←−f is also
treelike.

Note that G′(f, f) is the simple triod {x ∈ [0, 1]3 | x1 = x2 = 0} ∪
{x ∈ [0, 1]3 | x1 = 0 and x2 = x3} ∪ {x ∈ [0, 1]3 | x1 = x2 = x3}.
Because G(f) contains the graph of the identity on [0, 1], using Theorem
2.2 we see that M contains a triod. Because G′(f, f) and G′(f−1, f−1)
are homeomorphic and G(f−1) contains the identity, N similarly contains
a triod.

�

4.2. Simple closed curves. The author circulated a draft of this man-
uscript in early 2015 and one of the problems (Problem 5.12) we posed in
it was quickly solved by Itzok Banič, Matevž Črepnjak, and Van Nall [2].
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(1/2,1) (1,1)

(0,0)

(7/8,1/4)

(5/8,7/8)

(3/4,1)

Figure 3. The graph of the bonding function f in Ex-
ample 4.4.

We are keeping that problem in the problem section of this paper because
they cite it. In our next example we modify their example slightly and
prove that the inverse limit with this function also solves Problem 5.12.
Because this graph is a subset of theirs, this also shows that their function
produces an inverse limit that contains a simple closed curve.

Example 4.4. Let f : [0, 1] ↗ [0, 1] be the upper semi-continuous func-
tion whose graph consists of five straight line intervals, `1 from (0, 0) to
(1/2, 1), `2 from (1/2, 1) to (5/8, 7/8), `3 from (5/8, 7/8) to (3/4, 1), `4
from (0, 0) to (1, 1), and `5 from (7/8, 1/4) to (1, 1). Then, G(f) is an arc
but lim←−f is a one-dimensional nonconnected compactum that contains a
simple closed curve.

Proof. LetM = lim←−f . Because f has zero-dimensional values, dim(M) ≤
1, [13, Theorem 5.3, p. 1330]. Because M contains the arc {x ∈ [0, 1]∞ |
xi+1 = xi for i = 1, 2, 3, . . . }, dim(M) = 1.

We show that G′(f, f) contains a simple closed curve. Then, using the
fact that G(f) contains the graph of the identity on [0, 1], Theorem 2.2
allows us to conclude that M contains a simple closed curve. Note that
G(f) is the union of five homeomorphisms on intervals, hi, 1 ≤ i ≤ 5,
where for each i, the graph of hi is the line `i. Let α1 = G′(h5, h2);
α2 = G′(h5, h3); α3 = G′(h4, h2); α4 = G′(h4, h3). Then, α1∪α2∪α3∪α4

is a simple closed curve lying in G′(f, f).
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Let k1 = h1|[1/4, 1/2], k2 = h5|[7/8, 11/12], k3 = h5|[11/12, 15/16],
and k4 = h5|[15/16, 23/24]. Let β1 = G′(k1, k2); β2 = G′(h2, k3); β3 =
G′(h3, k4). Then, β = β1 ∪ β2 ∪ β3 is an arc lying in G′2 and U =
{(x1, x2, x3) ∈ [0, 1]3 | x2 < x1 and x3 > 3/4} is an open set containing
β that contains no point of G′2 − β. So, G′2 is not connected; thus, M is
not connected. �

For reasons similar to those in the previous paragraph the example of
Banič, Črepnjak, and Nall is not connected. A connected example could
be of interest.

5. PROBLEMS

Assuming that the bonding functions in an inverse limit sequence on
[0, 1] have graphs that are arcs is a natural assumption given that the
graphs of continuous functions from [0, 1] into itself are arcs. This section
includes some problems suggested by consideration of inverse limits with
set-valued functions on [0, 1] having graphs that are arcs. A number of
these problems have been posed before in a more general context. On
the other hand, many of the problems in this list that have not been
previously posed elsewhere might well be raised in a more general setting.
For this reason, in several problems we put the phrase ‘whose graph is
an arc’ in parenthesis effectively posing two problems, one with and one
without the parenthetical hypothesis. As with many questions involving
inverse limits with set-valued function, the most useful answers to these
problems are likely to be in terms involving properties of the bonding
functions that are easy to verify. Certainly, this is not a definitive list of
such problems, but the author hopes this can serve as a starting place
for a number of successful investigations of inverse limits with set-valued
functions having graphs that are arcs.

In light of Example 4.2 of this paper, our first problem seems natural.

Problem 5.1. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function such that G(fn) is an arc for each positive
integer n. Is lim←−f connected?

The question of when an inverse limit with set-valued functions is con-
nected has been posed and addressed often. Greenwood and Kennedy
have characterized connectedness of inverse limits with set-valued func-
tions on [0, 1] in a paper to appear in Fundamenta Matematicae [4]. How-
ever, in the setting of inverse limit systems on [0, 1] in which the bonding
functions have graphs that are arcs, a characterization of connectedness
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(resp., a sufficient condition for connectedness) would be of interest, par-
ticularly if the condition is easy to check.

Problem 5.2. Suppose f is a sequence such that fi : [0, 1] ↗ [0, 1] is a
surjective upper semi-continuous function having a graph that is an arc
for each positive integer i. Find necessary and sufficient conditions that
lim←−f be connected.

Problem 5.3. Suppose f is a sequence such that fi : [0, 1] ↗ [0, 1] is
a surjective upper semi-continuous function having a graph that is an
arc for each positive integer i. Find sufficient conditions for lim←−f to be
connected.

The next two problems are the single bonding function versions of the
previous two problems. These versions of those problems may be more
tractable and would be of interest.

Problem 5.4. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find necessary and
sufficient conditions that lim←−f be connected.

Problem 5.5. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find sufficient
conditions on the bonding function for lim←−f to be connected.

It has long been known that a set-valued function on [0, 1] that is not
a mapping can produce an arc as its inverse limit, [5, Example 3.1]. More
recently, examples have been published showing that set-valued functions
on [0, 1] can produce chainable continua that are not arcs ([6, Example
5.1] and [7, Example 7.1]) leading us to the following problem.

Problem 5.6. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find necessary and
sufficient conditions that lim←−f be chainable.

Problem 5.7. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find sufficient
conditions on the bonding function for lim←−f to be chainable.

Often chainability of an inverse limit with a set-valued function on
[0, 1] fails due to the existence of a triod in the inverse limit. Example 4.3
shows that even if the graph of a single bonding function on [0, 1] is an
arc, its inverse limit can contain a triod. See also Example 3.11 of [5, pp.
57–58] as cited earlier. Such examples prompt the next three problems.
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Problem 5.8. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). Find sufficient
conditions on the bonding function for lim←−f to be an atriodic continuum.

Problem 5.9. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). Find necessary
and sufficient conditions that lim←−f be an atriodic continuum.

Problem 5.10. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). If lim←−f is atri-
odic, is lim←−f−1 atriodic?

Problem 5.11. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). If lim←−f is an
atriodic treelike continuum, is it chainable?

Chainability would fail in an inverse limit on [0, 1] with set-valued
functions if the inverse limit contains a simple closed curve. Our next
problem appeared in an earlier draft of this article but it has subsequently
been solved although we do not know of a connected example. The original
solution was published by Banič, Črepnjak, and Nall in [2]. Example 4.4
above is a modification of their example that also settles the question.

Problem 5.12. (Solved) Suppose f : [0, 1]↗ [0, 1] is a surjective upper
semi-continuous set-valued function whose graph is an arc. If lim←−f is
one-dimensional, can it contain a simple closed curve? (Yes)

Problem 5.13. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). Find sufficient
conditions on the bonding function for lim←−f to be an acyclic continuum.

Problem 5.14. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). Find necessary
and sufficient conditions that lim←−f be an acyclic continuum.

Treelikeness appears to be closely tied to dimension in inverse limits on
[0, 1] with set-valued functions. Examples show that an inverse limit on
[0, 1] with bonding functions having graphs that are arcs can be infinite
dimensional [5, Example 2.3, p. 19] or have any finite dimension [5,
Chapter 5, pp. 70–73].

Problem 5.15. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find sufficient
conditions on the bonding function for lim←−f to be a treelike continuum.
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Problem 5.16. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find necessary and
sufficient conditions that lim←−f be treelike.

Problem 5.17. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc) and lim←−f is a
treelike continuum. Is lim←−f−1 treelike?

On [0, 1], it is known that if the bonding function is interval-valued
(resp., its inverse is interval-valued), then the inverse limit has trivial
shape, [3] (resp., Theorem 3.4). Among one-dimensional continua tree-
likeness is characterized by the property of having trivial shape so the
following three problem are of interest.

Problem 5.18. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function (whose graph is an arc). Find sufficient
conditions that lim←−f have trivial shape.

Problem 5.19. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find necessary and
sufficient conditions that lim←−f be one-dimensional.

Problem 5.20. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find sufficient
conditions on the bonding function for lim←−f to be one-dimensional.

Pertaining to Problem 5.19, it is known that if f : [0, 1] ↗ [0, 1] is an
upper semi-continuous set-valued function such that G(f) does not con-
tain both a horizontal and a vertical interval then lim←−f is one-dimensional
[13, Theorem 5.5, p. 1332]. However, there are examples of functions hav-
ing a treelike inverse limit even though their graphs are arcs that contain
both horizontal and vertical intervals [8, Example 5.3, pp. 628-629].

Inverse limits with upper semi-continuous bonding functions on [0, 1]
having graphs that are arcs can be indecomposble [5, Example 3.9, p. 56].

Problem 5.21. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find sufficient
conditions that lim←−f be indecomposable.

Indecomposability in inverse limits with set-valued bonding functions
appears to be tied to the full projection property (see [5, Section 3.5] for
the definition and additional information). Problem 5.21 leads to our next
problem.
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Problem 5.22. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous set-valued function whose graph is an arc. Find sufficient
conditions that lim←−f have the full projection property.

Problem 5.23. In each problem in this section, make the additional as-
sumption that the graph of each function is the union of finitely many
straight line intervals.
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