A BRIEF HISTORICAL VIEW OF
CONTINUUM THEORY

W. T. INGRAM

ABSTRACT. We explore a few topics in continuum theory
from their roots. Specifically, we examine the evolution of
the definition of continuum and then restrict most of our at-
tention to one-dimensional continua. Particular attention is
paid to indecomposable continua, the fixed point property,
hereditary equivalent continua, homogeneous continua, chain-
able continua and span of continua. In this paper, we give
an inverse limit description of an indecomposable circle-like
continuum that i1s homeomorphic to the first example of an
indecomposable continuum given by L. E. J. Brouwer in 1910.

1. INTRODUCTION

This article' is not intended to be a historian’s treatment of the
history of continuum theory for I am not a historian. Rather, I
will trace some of the ideas in continuum theory back near, if not
actually to, their genesis. The writers of the late 1800s, just as is
the case with writers today, do not appear always to have been fully
aware of the work of some of their contemporaries. I will give what
may be an example of this in the first paragraph of Section 2. As
a consequence, | cannot be certain that some things that appear
to be “first” were indeed not without some precedent. Some of the
sources | read in the preparation of the talk and which I quote in
the present article include [17], [18], [26], [28], [34], [37], [40], [44],
[45]. Additional pertinent articles, some of which are not actually
cited within this paper, may be found in the references.

I make no claim, nor do I attempt, to cover every aspect of
continuum theory in this paper. The major interests of the experts

!This paper is an outgrowth of a talk on the history of continuum theory
before 1990 given at the University of Alabama at Birmingham, February 22,
2003, at a conference marking E. D. Tymchatyn’s sixtieth birthday.
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in continuum theory will not all be addressed. Indeed, not even
all of my own personal interests have found their way into these
pages. | apologize now if I omit saying something about a particular
reader’s favorite niche of continuum theory. My task for my talk
was to discuss the pre-1990 era, so I do not really delve into many
of the things I have enjoyed working on over the past several years.

I will limit these remarks to one-dimensional continua, the so
called curves. There are several reasons for this:

1. this is where I have done most of my own work,

2. there is plenty of material and

3. continuum theory just may have been born out of attempts
to understand curves.

2. EARLY DEVELOPMENTS: 1883-1922

Organizing the talk from which this article grew presented a ma-
jor problem. In my talk I chose a time-line as the principal tool in
its format and I adhere to that in this article as well. Sometimes,
when it is appropriate, I will break strict adherence to the time-
line to trace an idea further into its development. J. H. Manheim,
[37, p. 211, says in his preface, “A study such as this must begin
somewhere ...” . So, we begin in 1883 with G. Cantor’s definition
of a continuum [11]: a perfect set in E™ such that for each two
points a, b of it and for each € > 0 there corresponds a finite system
of points pg = a, p1,pa,...,p, = b of it such that |p; — pir1| < &,
0 < ¢ < n. In the presence of compactness Cantor’s finite system of
points condition is equivalent to the modern day meaning of con-
nected in metric spaces. In [11], Cantor provides an example (the
classic middle-thirds Cantor set) to show how far perfect alone is
from capturing the notion of a curve. So, it appears that the Can-
tor set was invented to justify Cantor’s definition of a “continuum.”
Interestingly, eight years earlier, H. J. S. Smith gave an example
of a Cantor set plus countably many isolated points in a paper on
integration theory [42], a paper perhaps not known to Cantor.

Today, we recognize the salient features of Cantor’s definition
to be that the set be closed and connected—the definition of con-
tinuum used, for example, by R. L. Moore [40]. The definition of
connected evolved until it was divorced from the metric setting and
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given its modern meaning independently by N. Lennes and F. Riesz,
[45].

Most continuum theorists now define a continuum to be a com-
pact, connected subset of a metric space though some take a some-
what broader view and study compact, connected Hausdorff spaces.
The study of compactness can be traced to E. Borel’s thesis in 1894
where he proved that countable open covers of the interval contain
finite subcovers [18]. E. Lindeldf subsequently showed the assump-
tion of countability is unnecessary [18]. The term compact was
introduced by M. Fréchet in 1904 to describe the property that ev-
ery sequence has a convergent subsequence [18]. Compact in the
modern sense was introduced by P. Alexandroff and P. Urysohn in
1923 [18].

Cantor remarked (see [45]) that his definition of continuum did
not restrict dimension. This indicates that his intent was not to
define the linear continuum of the real numbers. Cantor’s definition
notwithstanding and, although it is pure speculation on my part,
I believe a lot of the motivation of the early work in continuum
theory was to “define” curves (probably things they could draw)
by their properties. The definition of small inductive dimension
that evolved ruled out the disk as a “curve” but then gave rise to
the consideration of the nature of boundaries of small open sets
and probably led to the notions of dendrite, regular curve, rational
curve, etc.

To make advances in real and complex analysis, it became imper-
ative to gain a better understanding of the topology of Euclidean
spaces. Thus, an early and important result was the Jordan Curve
Theorem: a simple closed curve in the plane separates the plane
into two mutually exclusive open sets such that it is the boundary
of each of them. C. Jordan stated this in 1887 but the first rigorous
proof was given in 1905 by O. Veblen [17]. Beginning around 1904,
A. Schoenflies published several papers resulting from his studies
of the plane. He had numerous results relating a continuous curve
to its complement in the plane (including accessibility theorems).
Moore states in the Appendix to [40] that ... Schoenflies has not
received sufficient credit for all of the contributions which he made
to point set theory.” By sometimes relying too heavily on intuition,
Schoenflies also made mistakes. One of these was that a curve that
is the common boundary of two mutually exclusive open sets in the
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plane is decomposable (i. e., the union of two of its proper subcon-
tinua). L. E. J. Brouwer demonstrated this to be false in 1910 and
described the first indecomposable continuum [9] (a continuum is
indecomposable if it is not decomposable).

J. Kennedy [26] has given us a description of Brouwer’s example.
In the following, I give an indication of a proof that his example
is homeomorphic to an inverse limit on circles using a single bond-
ing map. This relies heavily on Kennedy’s description. In order
to save the reader from having to have her paper in hand to read
this one, I have reproduced several of her pictures and have quoted
extensively from her description of the example. For a more thor-
ough description of the example, the reader is referred to Kennedy’s
article.

To obtain Brouwer’s example, one begins with a rectangular 2-
cell, Rp, in the plane. From this 2-cell one removes an open set D
and an open set Ry along with an open interval lying in the common
boundaries of Ry and R;. This leaves a closed topological annulus,
Ay, in the plane that one may chain with a circular chain C; whose
first link contains the lower left-hand corner of this annulus and
proceeds around the annulus in a clockwise direction.

R

Figure 1
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The second stage of the construction involves removal of two open
sets Ry and Rs along with appropriate parts of their boundaries
producing an annulus, A,. Notice in Figure 2 that Ry and R3 run
virtually “parallel” around the upper part of A;. When the annulus
Ay is chained with a circular chain Cy refining ¢y and whose first
link contains the lower left-hand corner of this annulus and lies in
the first link of Cy, C; circles through Cy one and one-half times and
then doubles back effecting circling once.

R
D
R
+ R2
I~
L I~ R3
Figure 2

The third stage of the construction involves removal to two more
open sets Ry and Ry along with appropriate parts of their bound-
aries producing an annulus As. Notice in Figure 3 that these two
open sets also run virtually parallel through the first half of the
annulus A;. When Aj is chained with a circular chain Cs refining
C; and whose first link contains the lower left-hand corner of this
annulus and lies in the first link of Cy, C5 circles through Cy one and
one-half times and then doubles back just as before.
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<

Figure 3

Continuing this process, we see that the Brouwer continuum is
the intersection of this sequence of annuli, A;, A9, As,... and that
it can be chained with a sequence of circular chains each succeeding
term of which circles straight through its preceding term one and
one-half times and doubles straight back.

Using standard techniques such at those used in [24], one can
show that such a circle-like continuum is homeomorphic to an in-
verse limit on circles using a single bonding mapping f schemati-
cally illustrated in Figure 4. The map fixes (1,0), takes the top of
the circle around the circle once with (—1, 0) being thrown to (1,0).
It takes the bottom half of the circle half-way around traversing the
top and then folding back. Analytically, if S! denotes the unit circle
in the complex plane, the map f: S' —% S! is given by

£2) 2 if 0 < Arg(z) < 37/2,
) =
272 if 37 /2 < Arg(z) < 27

That @{Sl, f} is indecomposable may easily be seen by observing

that there are three points of S1, (1,0),(—1,0) and (0,—1) such
that if « is an arc lying in S* and containing two of these three
points then (fo f)(a) = S!. By Kuykendall’s theorem [29, Theo-
rem 2, p. 267], this is sufficient that 1'&1&{517 fo f} (and, therefore,
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1'&1&{517 f}) is indecomposable. However it is easy to argue directly
that the existence of the three points (1,0), (—=1,0) and (0, —1) of S!
is sufficient for indecomposability of the inverse limit. We provide
an argument in the next paragraph.

Let M = 1'&1&{517 f} and assume H and K are proper subcon-
tinua of M such that M = H U K. Let j be an integer such
that if n > j then m,(H) # S! and 7,(K) # S'. Then, since
7i+2(H) and ;42 (K) are two subarcs of S whose union is S1, one
of them, say m;49(H), contains two of (1,0),(—1,0) and (0, —1).
But, 7;(H) = (f o forjy2)(H) = SL, contradicting the choice of
J.

(-1,0) 1,0

Figure 4

Z. Janiszewski [25], in 1911, inspired by Brouwer’s example de-
scribed a simplification of Brouwer’s example that does not separate
the plane; in 1922 B. Knaster gave us through C. Kuratowski, the
familiar geometric description [28, p. 205, Fig. 4] of the Brouwer-
Janiszewski-Knaster continuum (see Figure 5), a continuum that
also can arise in the construction of the Smale horseshoe, [41]. In
1922, Knaster described an hereditarily indecomposable continuum
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(a continuum is hereditarily indecomposable provided each of its
subcontinua is indecomposable) [27].

Figure 5

In 1912, Brouwer [10] influenced continuum theory in another
way. He proved that the n-cell in Euclidean n-dimensional space
has the fixed point property (although some think this may partially
date back to P. Bohl [8] in 1904 for differentiable maps). This
result has given rise to one of the famous (and as yet unsolved)
problems of continuum theory: Does every non-separating plane
continuum have the fixed point property? W. L. Ayres [2] appears
to have first asked this question in print. In 1951 O. H. Hamilton
showed that chainable continua (see the next paragraph for the
definition) have the fixed point property [21]. Also in 1951, R H
Bing [6] asked if tree-like continua have the fixed point property.
Actually, in his 1951 paper Bing asked if planar tree-like continua
have the fixed point property, but in 1969 in [7] the reference to the
plane had disappeared. In 1979, Bellamy [3] provided us with an
example of a tree-like continuum without the fixed point property;
the question of whether every non-separating plane continuum has
the fixed point property remains open.

In 1916, Moore [39] proved that in a locally connected, separable
metric space, connected open sets are arcwise connected (Moore
actually proved this in a more general setting than metric). His
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method of proof spawned the study of chainable continua. A con-
tinuum M is chainable if for each € > 0 there is a finite sequence of
open sets Dy, Dy, ..., D, covering M such that D;ND; # ( if and
only if |¢ — j| < 1 and diamD; < ¢ for 1 < i < n. Chainability of
a continuum is equivalent to its being homeomorphic to an inverse
limit on intervals.

3. FUNDAMENTA MATHEMATICAE, 1920-PRESENT

A very important date in the history of continuum theory is
1920—the year that marks the inaugural issue of the Polish Journal,
Fundamenta Mathematicae. One could spend pages extolling the
influences of this journal on the development of continuum theory.
I will mention only a few.

In the very first issue, W. Sierpifiski introduced the notion of
homogeneity (a continuum is homogeneous provided for each two
points p and ¢ of it there is a homeomorphism A of the continuum
onto itself such that h(p) = ¢) and later in Volume 1, Knaster and
Kuratowski asked whether each homogeneous plane continuum is
a simple closed curve. In 1924, S. Mazurkiewicz [33] proved each
locally connected, homogeneous plane continuum is a simple closed
curve.

In Volume II of Fundamenta, Mazurkiewicz [32] asked if the arc
is the only finite dimensional continuum homeomorphic to each of
its non-degenerate subcontinua. Knaster’s hereditarily indecom-
posable continuum (mentioned in the previous section) appeared
in Volume III.

4. THE PSEUDO-ARC, 1948

Many important discoveries were made in the ‘20s, ‘30s and early
‘40s, but in the interest of getting to our lifetimes, let me jump to
a watershed event in 1948. Just in passing, I will mention that
in 1936 S. Eilenberg [19] demonstrated ways to determine topolog-
ical information about a continuum from properties of the space
of mappings of the continuum to the circle; in 1937, H. Freuden-
thal [20] described solenoids (studied earlier and shown by D. van
Dantzig to be homogeneous in 1930) in terms of inverse limits. In
1948, E. E. Moise [38] gave a surprising answer to Mazurkiewicz’
question of 1921—the arc is not the only hereditarily equivalent
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continuum. Moise dubbed his example the pseudo-arc. It is an
indecomposable chainable continuum, so being hereditarily equiv-
alent, it is hereditarily indecomposable. That same year (1948),
Bing [4] showed that the pseudo-arc answers the question of Knaster
and Kuratowski in the negative—the pseudo-arc is another homo-
geneous plane continuum. In 1951, Bing [5] showed that each two
hereditarily indecomposable chainable continua are homeomorphic.
Thus, since his example is chainable, Knaster had actually built the
pseudo-arc in 1922 when he constructed the first hereditarily inde-
composable continuum. Much more information on the pseudo-arc
can be found in the work of W. Lewis. In particular the reader is
referred to [31].

5. THE LATE FIFTIES AND THE SIXTIES

In 1959, R. D. Anderson and G. Choquet [1] constructed a non-
separating plane continuum no two of whose non-degenerate sub-
continua are homeomorphic. This paper showed the potential of
inverse limits to build complicated objects out of simple ones. In
1967, H. Cook [13] adapted the Anderson-Choquet technique to
construct a continuum whose only non-constant continuous self-
transformation is the identity.

Two events significant in this story occurred in 1960. G. Hen-
derson [22] proved that the arc is the only decomposable hered-
itarily equivalent continuum (i. e., homeomorphic to each of its
non-degenerate subcontinua); J. H. Case and R. E. Chamberlin
[12] characterized tree-likeness of continua. The Case-Chamberlin
characterization is: a continuum is tree-like if and only if it is
one-dimensional and every mapping of the continuum to a one-
dimensional polyhedron is inessential. Due to the limited scope
of this article, I will not delve more deeply into the study of the
space of mappings of a continuum into a polyhedron such as the
circle or the figure eight although this is a rich aspect of contin-
uum theory begun, as mentioned earlier, by Eilenberg. Indeed, I
mention the Case-Chamberlin result mainly because ten years later
in 1970 Cook used it in showing that dendroids are tree-like [14]
and that hereditarily equivalent continua are tree-like [15]. Cook’s
result, along with Henderson’s, represents the current state of our
knowledge on the Mazurkiewicz problem on hereditarily equivalent
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continua, although L. Oversteegen and E. D. Tymchatyn [36] have
shown that an hereditarily equivalent continuum in the plane has
symmetric span zero. For more information on span zero including
the definition see the next paragraph. It is not known if hereditarily
equivalent continua must have span zero.

A question that has been a sort of “guiding star” for my research
over my career has been: What internal properties of continua char-
acterize chainability? In 1964, A. Lelek [30] defined a property of
chainable continua which may characterize chainability—span zero.
A continuum has span zero provided every subcontinuum of the
product of the continuum with itself having one projection lying in
the other must intersect the diagonal (symmetric span zero requires
that every subcontinuum of the product having both projections
the same must intersect the diagonal). Span zero gave me precisely
the tool to show in 1972 that there exists an atriodic tree-like con-
tinuum that is not chainable [23]. If you look over Tymchatyn’s
papers, you will see he has had a keen interest in whether continua
with span zero must be chainable. If they are, then a result of
Oversteegen and Tymchatyn in 1982 [35] yields that we know all of
the homogeneous plane continua.

6. THE HoUSTON SEMINAR AND THE HousTON PROBLEM BoOK

In 1971, the seminar at Houston began—the seminar that led to
the Houston Problem Book [16]. Lelek made sure that we had
a permanent record of the seminar by purchasing the books into
which the seminar notes were entered. These books led directly
to the creation of the Houston Problem Book. Through the coop-
eration of my institution, the University of Missouri - Rolla, the
notebooks from that seminar have been scanned and made avail-
able on-line through the University of Missouri Library archives at
http://digital.library.umsystem.edu/ebind /ebindsamples.html.

Tymchatyn’s work was often featured in this seminar. The very
first problem raised at the very first meeting of the seminar was
solved by Tymchatyn. Indeed, the first three problems are prob-
lems of Tymchatyn who has solved Problems 1 and 3 while Problem
2 was still open in 1995. Moreover, the paper that was presented
in the second and third meetings of the seminar was one written
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by Tymchatyn, Continua whose connected subsets are arcwise con-
nected [43].

Along with Lelek, Cook gets a lot of credit for the existence of
Houston Problem Book. He wrote a computer program designed
specifically to create a database from which the first edition of the
problem book was produced. I was responsible for rescuing the files
from the University of Houston mainframe computer and getting
them onto a desktop computer for the first time. The text files were
subsequently formatted as AMS TgXfiles by a graduate student at
Houston, R. Henderson. It was these TEXfiles that we updated to
produce the paper containing the published edition of the problem
book, [16].
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