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Abstract

In this paper we state some problems that arise in the study of inverse limits.
Many of the problems come from research in inverse limits inspired by considera-
tions from dynamical systems. Areas from which the problems are chosen include
chainable continua, plane embeddings, inverse limits on [0, 1], the Property of Kel-
ley, and inverse limits using upper semi-continuous bonding functions. Problems
related to recent developments in applications of inverse limits to models arising
from economics constitute the final section of the paper.
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1 Introduction

Throughout this article, we use the term continuum to mean a compact, con-
nected subset of a metric space; by a mapping we mean a continuous function.
A continuum is decomposable provided it is the union of two of its proper sub-
continua; a continuum is indecomposble if it is not decomposable. A continuum
is hereditarily decomposable if each of its subcontinua is decomposable.

If Xi1,X,, X3,...1s a sequence of metric spaces and f1, f2, f3,... is a sequence
of mappings such that f; : X,y — X, for e = 1,2,3, ..., by the inverse limat
of the inverse limit sequence {X;, f;} is meant the subset of the product space
[Tiso X; that contains the point (xq, 22, xs,...) if and only if fi(2;41) = 2; for
each positive integer ¢. The inverse limit of the inverse limit sequence {X;, f;}
is denoted by lim {X;, f;}. For convenience of notation, we will use boldface
characters to denote sequences. Thus, if sy, s9, $3,... is a sequence, we denote
this sequence by s. By this convention, the point (&1, xs, x3,...) of an inverse
limit space will also be denoted by x, the sequence of factor spaces by X and
the sequence of bonding maps by f. For brevity, we will denote the inverse
limit space by 1£n f.
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A problem set is invariably personal and reflects the interests of the compiler of
the set. So it is with this collection of problems. Because of recent developments
in the use of inverse limits in certain kinds of models in economics, in Section
7 we include some problems arising from this although we have not personally
contributed anything to these applications. Instead we rely on some who have
made contributions for problems that reflect the current state of this research.

2 Characterization of Chainability

Although it is not the original definition of chainability we take as our defini-
tion that a continuum is chainable to be that the continuum is homeomorphic
to an inverse limit on intervals; a continuum is tree-like provided it is homeo-
morphic to an inverse limit on trees. A continuum is unicoherent provided it
is true that if it is the union of two subcontinua H and K then H N K is con-
nected; a continuum is hereditarily unicoherent provided every subcontinuum
of it is unicoherent. A continuum M 1is a triod provided there is a subcontin-
uum H of M so that M — H has at least three components; a continuum is
atriodic provided it contains no triod. It is immediate that chainable continua
are tree-like. It is well known that chainable continua are atriodic and tree-like
continua are hereditarily unicoherent.

Several characterizations of chainability of a continuum exist. These include
(1) (the original definition) for each ¢ > 0 there is a finite collection of open
sets C1,Cy,...,C, covering M such that diam(C;) < ¢ for 1 < i < n and
C:NC; # 0 if and only if |1 — j| < 1 and (2) for each positive number ¢ there is
a map f. of the continuum to [0, 1] such that if ¢ is in [0, 1] then the diameter
of f71(f-(¢)) is less than e. Notably missing is a characterization involving a
list of internal topological properties of the continuum. For example, in case
the continuum is hereditarily decomposable, R H Bing [3, Theorem 11] proved
that the continuum is chainable if and only if it is atriodic and hereditarily
unicoherent. This characterization for hereditarily decomposable continua is
satisfying in that it is given in terms of “internal” topological properties of
the continuum.

Problem 1 Characterize chainability of a continuum in terms of internal
topological properties of the continuum.

J. B. Fugate [9] extended Bing’s result from the class of hereditarily decom-
posable continua to the class of those continua having the property that every
indecomposable subcontinuum is chainable. Thus, Problem 1 may be solved
by characterizing chainability of indecomposable continua. Case and Cham-
berlin [6] gave a characterization of tree-like continua as those one-dimensional
continua for which every mapping to a one-dimensional polyhedron is inessen-



tial (i.e., homotopic to a constant map). J. Krasinkiewicz later proved that a
one-dimensional continuum is tree-like if and only if every mapping of it to a
figure-8 (the union of two circles with a one-point intersection) is inessential
[26]. Although these characterizations of tree-likeness do not involve “internal”
topological properties, it would still be of significant interest to characterize
chainability among tree-like continua. Since tree-like continua are hereditarily
unicoherent, atriodicity is a natural candidate for one of the properties on a
list of characterizing properties. That atriodicity alone is not sufficient was
shown in [13].

One significant attempt at characterizing chainability involves the notion of
the span of a continuum. If M is a continuum, the span of M is the least upper
bound of {&¢ > 0 | there is a subcontinuum C of M x M such that p;(C) =
p2(C) and dist(z,y) > € for all (x,y) in C'} (p1 and py denote the projections
of M x M into its factors). The following problem on span remains open even
though it was featured [8] in the first volume of Open Problems in Topology.

Problem 2 If the span of a continuum is 0, is M chainable?

A. Lelek intoduced span in [28] and proved that chainable continua have span
0. Although span 0 is a topological property, in some real sense it is not
“internal”. Consequently, if one were to settle Problem 2 in the affirmative,
the nature of the definition of span would, in this author’s opinion, leave work
to be done on Problem 1. That said, Problem 2 is significant in its own right
and not only because it has become an “old” problem. For instance, a positive
solution would tell us that we know all of the homogeneous plane continua

[34].

3 Plane Embedding

In thinking about Problem 1 and in light of the Case-Chamberlin theorem [6]
characterizing tree-likeness, the author began a quest to settle the question
whether atriodic tree-like continua are chainable. That investigation led to an
example of an atriodic tree-like continuum that is not chainable [13]. Span
turned out to be just the tool needed to show that the example obtained is
not chainable.

However, span was not the first tool the author tried to use. In fact, two
other properties of chainable continua first came to mind: planarity and the
fixed point property. Bing showed that chainable continua can be embedded
in the plane [3] and O. H. Hamilton showed that chainable continua have the
fixed point property [11]. The author chose to try to employ Bing’s result
and construct an atriodic tree-like continuum that cannot be embedded in the



plane. This leads to our next problem.

Problem 3 Characterize those tree-like continua that can be embedded in the
plane.

The reader interested in this problem should be familiar with Brian Raines
work [35] on local planarity of inverse limits of graphs.

Of course, tree-like continua that cannot be embedded in the plane are well
known. Arguably the simplest of these may be one given by Bing [3]. This
example consists of a ray with remainder a simple triod together with an arc
that intersects the union of the ray and the triod only at the junction point
of the triod. A map of the 4-od that produces in its inverse limit a simple
triod and a ray having the simple triod as a remainder is shown in Figure 1.
Bing’s example is obtained by attaching an arc to this inverse limit at the
point (0,0, 0,...) and otherwise misses the inverse limit.

B

Figure 1

Finding an atriodic example presents somewhat more of a challenge. Although
other non-planar atriodic tree-like continua are known, an example may be
constructed in the following way. Let M be the atriodic tree-like continuum
with positive symmetric span that the author constructed in [13] and let C' be
the product of M with a Cantor set. A construction of Laidacker [27] produces
an atriodic tree-like continuum M’ that contains C'. Dusan Repovs, Arkadij
B. Skopenkov, and Evgenij V. Séepin prove in [36] that the plane does not
contain uncountably many mutually exclusive tree-like continua with positive
symmetric span so the continuum M’ is non-planar.

In order to tackle Problem 3, it would be helpful to have some examples of pla-
nar continua that “look” like they might be non-planar as well as some simpler
examples of non-planar atriodic tree-like continua to study. The remainder of
this section is devoted to some examples and possible examples.



The author’s first attempts to construct an atriodic tree-like continuum that
cannot be embedded in the plane failed (as have many subsequent attempts).
We briefly describe an early attempt. The picture in Figure 2 is a schematic
drawing of a mapping f of a simple triod T' = [OA] U [OB] U [OC] onto itself.
The action of the function is to take the first half of [OA] onto [AO] with
f(O) = A and the second half of [OA] onto [OB] with f(A) = B; f takes the
first third of [OB] onto [AOQ], the next sixth onto the first half of [OC], the
next sixth folds back to O and the final third is taken onto [OB]; f takes the
first third of [OC] onto [AO], the next third half way out [OB] and back, and
the final third onto [OC]. The resulting inverse limit is atriodic, but it is a
chainable continuum because f o f factors through [0, 1] (i.e., there are maps
g:T —[0,1] and h : [0,1] — T so that f = h o g). Though the schematic of

f cannot be drawn in the plane, 1£n f being chainable is planar.

Figure 2

An alternative to Bing’s non-planar tree-like continuum mentioned above is
the following. Take a continuum consisting of two mutually exclusive rays
each having the same simple triod as remainder but the rays wind around the
triod in opposite directions. The resulting tree-like continuum is non-planar.
This observation suggests the following way possibly to construct a non-planar
atriodic tree-like continuum. The continuum is an inverse limit on a simple 5-
od, [OA]U[OBJU[OC]U[OD]U[O E]. Restricted to the triod [OA]JU[O B]U[OC]
our 5-od map is just the triod map that the author used in [13] to obtain an
atriodic tree-like continuum that is not chainable. We use the other two arms of
the 5-od to obtain rays that wind in “opposite” directions onto that example.
We provide a schematic diagram of the map in Figure 3. The author does not
know if the resulting inverse limit is non-planar.



Figure 3

There is a somewhat simpler possibility that results from an inverse limit
on 4-ods. The author does not know if the resulting inverse limit space is
non-planar. The bonding map f (shown in a schematic in Figure 4) has the
interesting feature that, although it can be “drawn in the plane”, f? cannot
be “drawn in the plane”. This appears to be caused by a twist of the arms of
the 4-od imposed by the bonding map. Unfortunately, as our second example
shows (see Figure 2), not being able to “draw” a schematic of the bonding
map in the plane does not guarantee that the inverse limit is non-planar.

Figure 4



4 Inverse Limits on [0, 1]

Considerable interaction between dynamacists and continuum theorists has oc-
curred in the past fifteen or twenty years. Inverse limits appeal to dynamacists
in part because they allow one to transform the study of a dynamical system
consisting of a space and a mapping of that space into itself into the study of
a (perhaps more complicated) space, the inverse limit, and a homeomorphism,
the shift, of that space into itself. Considerations in dynamics have led to ex-
tensive investigations of parameterized families of maps. Many of these are
maps of [0, 1] into itself and include the logistic family and the tent family. In-
terest in these families also rekindled the author’s interest in inverse limits on
[0,1] using a constant sequence of bonding maps in which that bonding map
is chosen from one of those two families or from one of several other families of
piecewise linear maps including the families f; for 0 <¢ <1, ¢4 for 0 < ¢ < 1,
far (also denoted gj. by the author and others) where both parameters come
from [0,1], and the family of permutation maps. In this article we provide
definitions only for the tent family (in the next paragraph) and the permuta-
tion maps (in the next section). For definitions of the families not discussed
further in this article and information on some of the inverse limits generated
by these families see [15], [16], [17], [21]. With one exception these are families
of unimodal maps, a class of maps of special interest in dynamics. Permuta-
tion maps are Markov maps, a class also of interest in dynamics. A map is
monotone provided its point inverses are connected; a map f : [0,1] — [0,1]
is unimodal provided f is not monotone and there is a point ¢, 0 < ¢ < 1,
such that f][0,c] and f|[c, 1] are monotone. A map f : [0,1] — [0, 1] is Markov
provided there is a finite subset {z; = 0,24,...,2, = 1} with 2; < 2,47 and
f[xi, xix1] is monotone for 1 < ¢ < n.

Tent maps are unimodal maps of [0, 1] constructed as follows. Choose a number
s from [0, 1] and let f : [0,1] — [0, 1] be the piecewise linear map that passes
through (0,0), (1/2,s), and (1,0). (Specifically, f; is given by fs(x) = 2sx for
0<az<1/2and f(x)=(2—=2s)x for 1/2 < a <1.)

One problem involving the tent family has sparked considerable interest and
has given rise to a large number of partial results.

Problem 4 If [, and f; are tent maps with 1£n fs and 1£n fy homeomorphic,
iss=17

This has been settled in a number of cases including Lois Kailhofer’s proof for
maps that have periodic critical points [23]. Stimac has announced a positive
solution if the maps have preperiodic critical points.

The collection of inverse limits arising from the tent family is rich in its vari-
ety. Barge, Brucks, and Diamond have shown that there are uncountably many



parameter values at which the inverse limit is so complicated that it contains
a copy of every continuum arising as an inverse limit space from a tent family
core (see the next paragraph) [2]. In spite of the presence of complicated topol-
ogy at some parameter values, progress has been made on Problem 4 when
the orbit of the critical point is infinite. B. Raines has begun a systematic
study of these inverse limits and has made some significant progress for cer-
tain parameter values. The author acknowledges private correspondence with
Professor Raines that provided some of the problems in this section as well as
some of the information on the literature related to these problems.

If f is a tent map 1£n fs is the closure of a topological ray. Except for s = 1 the
inverse limit is a decomposable continuum and if R is the ray that is dense in
the inverse limit, R — R is a proper subcontinuum that results from the inverse
limit on [fs(s), s] using the restriction of f; to that interval as the bonding
map. We refer to 1£n fi|[fs(s), s] as the core of 1£n fs and the map fs|[fs(s), $]
as a tent core. Sometimes the tent core is rescaled to be the map of [0, 1] onto
itself given by fs(z) = sz +2—sfor 0 <o <1—1/s and fs(z) = s — sz
for 1 —1/s < a < 1. Since the critical point is different depending on one’s
perspective, it is simply denoted by ¢ in the remainder of this section.

Raines’ approach to the case that the orbit of the critical point ¢ is infinite has
been to look at the omega limit set of ¢, w(c) = N2, {f*(c) | k > n}. When
the orbit of ¢ is infinite, w(¢) = [0, 1] or w(c) is totally disconnected. If the
orbit is infinite and w(e) is totally disconnected, w(¢) may be a countable set,
a Cantor set, or the union of a countable set and a Cantor set. It is in the
case that w(c) = [0,1] that the Barge, Brucks and Diamond phenomenon of

[2] occurs (i.e., there are parameter values at which the inverse limit of the
tent map contains a copy of every continuum that arises as an inverse limit
space from a tent family core).

Problem 5 (Raines) Suppose [ is a tent core with critical point ¢ such that
w(e) = [0,1]. If C is a composant of 1£n f, does C' contain a copy of every
continuum that arises as an inverse limit space of a tent family core?

Problem 6 (Raines) Suppose [ is a unimodal map with critical point ¢. Give
necessary and sufficient conditions on ¢ so that imf contains a copy of every
continuum that arises as an inverse limit space in a tent family core.

In case f is a tent core with critical point ¢ and w(e¢) is countable or the
union of a countable set and a Cantor set, it is known that the inverse limit is
an indecomposable arc continuum without end points (by an are continuum
we mean a continuum such that every proper subcontinuum is an arc). Good,
Knight, and Raines have shown [10] that there are uncountably many members
of the tent family cores with w(¢) countable that have topologically different
inverse limits.



In case f is a tent core with critical point ¢ and w(¢) is a Cantor set, the inverse
limit is indecomposable but it may have end points. If it has end points the
set of end points is uncountable [5]. The subcontinua of lgnf can be quite

complicated as demonstrated in [4]. This gives rise to the next problem.

Problem 7 (Raines) Let f be a tent core with critical point ¢ and w(c) a
Cantor set. Classify all possible subcontinua of 1i£n f.

We close this section with one final problem. If n is a positive integer and
o is a permutation on the set {1,2,...,n}, define a map f, : [0,1] — [0,1]
in the following way: (1) for 1 < i < nlet a; = (2 — 1)/(n — 1), (2) let
folai) = a,@), and (3) extend f, linearly to all of [0,1]. We call a map so
constructed a permutation map. These maps are all Markov maps and many
interesting continua result as the inverse limit space based on a permutation
map. In [18] the author began a study of the inverse limits spaces that result
from using a permutation map in an inverse limit. By brute force, all continua
arising from permutations based on 3, 4, or 5 elements were determined.

Problem 8 Classify all continua arising from permutation maps.

5 The Property of Kelley

A continuum M with metric d is said to have the Property of Kelley provided
if & > 0 there is a positive number ¢ such that if p and ¢ are points of M
and d(p,q) < ¢ and H is a subcontinuum of M containing p then there is a
subcontinuum K of M containing ¢ such that H(H, K') < € (H deonotes the
Hausdorff distance on the hyperspace of subcontinua C'(M)). This property
that we now call the Property of Kelley was introduced by J. Kelley in his
study of hyperspaces, but it is a nice continuum approximation property in
its own right. The author considered the property in [14], [19], and [20]. While
presenting the results that appeared in [19] and [20] in seminar, the author
was asked the following question by W. J. Charatonik.

Problem 9 (Charatonik) Is there a characterization of the Property of Kel-
ley in terms of the inverse limit representation of the continuum?

The author briefly tried to distill a sufficient condition from the proofs in the
papers in [19] and [20] but never found a satisfying theorem. Nonetheless, it
would be of interest to be able to determine the presence of the Property
of Kelley based on some easily checked conditions on the bonding maps in
an inverse limit representation of the continuum. Private communication with
W. J. Charatonik indicates that he and a student have obtained some sufficient

conditions on an inverse limit sequence to guarantee that the inverse limit have



the Property of Kelley.

Permutation maps were defined in Section 4. In [18] it was shown that if f is
a permutation map based on a permutation on 3, 4, or 5 elements, then 1£n f
has the Property of Kelley. This leads us to ask the following question.

Problem 10 Do all permutation maps produce continua with the Property of
Kelley?

6 Inverse Limits with upper semi-continuous bonding functions

W. S. Mahavier introduced inverse limits with upper semi-continuous bonding
functions in [29] but as inverse limits on closed subsets of [0, 1] x [0, 1]. In that
article he showed that inverse limits on closed subsets of [0,1] x [0,1] are
inverse limits on [0, 1] using upper semi-continuous closed set valued functions
as bonding functions. In a subsequent paper [22], Mahavier and the author
extended the definition to the setting of inverse limits on compact Hausdorft
spaces using upper semi-continuous closed set valued bonding functions. If V'
is a compact Hausdorfl space, 2" denotes the collection of all closed subsets
of Y. If X and Y are compact Hausdorff spaces, a function f : X — 2V is
called upper semi-continuous at the point = of X provided if O is an open
set in Y that contains f(x) then there is an open set U in X that contains
x and f(t) is a subset of O for every ¢ in U. If Xy, X3, X3,... is a sequence
of compact Hausdorff spaces and fi, f2, f3,... 1s a sequence of upper semi-
continuous functions such that f; : X;;; — 2%i for each 7, by the inverse limit
of the inverse sequence {X;, f;} is meant the subset of [[;5o X; that contains
the point x = (x1,22,23,...) if and only if x; € f(x;41). The reader will
note that in case the functions are single valued, this definition reduces to the
usual definition of an inverse limit. Beyond the collection of chainable continua
that occur with single valued bonding functions, many interesting examples
of continua result from inverse limits on [0, 1] with upper semi-continuous
bonding functions that cannot occur with single valued functions. Among
these are the Hilbert cube, the Cantor fan, a 2-cell with a sticker, and the
Hurewicz continuum H that has the property that if M is a metric continuum
there is a subcontinuum K of H and a mapping of K" onto M. The example
that produces a 2-cell with an attached arc leads to the following problem.

Problem 11 Is there an upper semi-continuous function f : [0,1] — 2001
such that lgnf is a 2-cell?

Admittedly, this problem is rather more specific than most in this article, but

perhaps it can serve as a starting point for an interesting investigation of these
new and different inverse limits.
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We end this section with a problem inspired by considerations from Section
7. Some models in economics are not well-defined either forward in time or
backward in time [7], [37]. Some models consist of the union of two mappings
that have no point in common. Perhaps an investigation of these new inverse
limits using these models would be helpful to economists as well as a way to
begin work on our next problem.

Problem 12 Suppose f :[0,1] — 20U is an upper semi-continuous function
that is the union of two mappings of [0,1]. What can be said about 1£nf?

7 Applications of Inverse Limits in Economics

An exciting recent development in inverse limits is the development of models
in economics in which the state of the model at time ¢ is related to its state
at time ¢ + 1 by some non-invertible mapping f. A solution to the model is
an infinite sequence w1, g, 3, ... such that f(ayq) = a; for t =1,2,3,.... So
the set of solutions is the inverse limit on the state space using the map f
as a bonding map. These models have arisen in cash-in-advance models [25]
and overlapping generations models [30,31] studied by various economists.
These models generally fall into a category of models described by economists
as having “backward dynamics” or as models involving “backward maps”.
Economists are interested in the inverse limit because it contains as its points
all future states predicted by the model. The author acknowledges private
correspondence with Judy Kennedy and Brian Raines used in the development
of this section and appreciates the contribution of problems by both of them.
The problems that they contributed are labeled below with their names. Of
course, any errors or misstatement of problems are solely the responsibility of
the author.

Iff:X — Xandg: X — X are maps of a topological space X, we say
that f and g are topologically conjugate provided there is a homeomorphism
h: X — X such that foh =hog. If f and ¢ are topologically conjugate, a
homeomorphism h such that foh = ho g is called a conjugacy.

Problem 13 (Kennedy-Stockman) Suppose f : [0,1] — [0,1] and ¢ :
[0,1] — [0,1] are topologically conjugate. How does one construct a home-
omorphism h so that foh =hog?

This problem is of deserves attention independent of the interest by economists.
For economists the existence of a conjugacy is not sufficient information for
carrying out some of the computations they need such as the computation of
measures and then integrals for utility functions. Specific questions related to
this problem and asked by Kennedy and Stockman include:

11



(1) Can the conjugacy be constructed by means of a sequence of approxima-
tions?

(2) If f and g are piecewise differentiable, must the conjugacy be piecewise
differentiable?

The next problem is related to Problem 5 above.

Problem 14 (Kennedy-Stockman) Do continua that contain copies of ev-
ery tnverse limit that arises in a tent family core occur as inverse limits in the
cash-in-advance model [25] or the overlapping generations model [32]7

Some models in economics are based on relations instead of functions so neither
forward nor backward dynamics is well defined. In particular the Christiano-
Harrison model [7] and a Stockman model [37] fit this scenario. Perhaps inverse
limits with upper semi-continuous bonding functions (see Section 6) could be
employed in an analysis of these models. Consequently, we reiterate Problem
12.

In considering models in economics, measure theory will likely play an im-
portant role for several reasons one of which we have already mentioned. For
instance, when economists consider models involving backward dynamics, they
would like to be able to “rank” the inverse limit spaces in some meaningful
way, perhaps by using “natural” invariant measures. For a survey of literature
on such measures see [12]. When comparing two inverse limit spaces but with
a precise meaning of “better” to be determined, Kennedy and Stockman ask
the following.

Problem 15 (Kennedy-Stockman) Suppose policy A and policy B in eco-
nomics lead to different inverse limit spaces. Determine which of the inverse
limits is “better”.

With a precise meaning of “complex” to be determined, they also ask.

Problem 16 (Kennedy-Stockman) For an economics model, what is the
measure of the set of initial conditions that lead to “complex” dynamics?

Problem 17 (Kennedy-Stockman) In a model from economics, if an equi-
librium point (i.e., point in the inverse limit) is chosen at random, what is the
probability that it is “complex”?

One search for appropriate measures on the inverse limit space centers on
somehow making use of measures already developed. Kennedy and Stockman
have recently succeeded in “lifting” given measures for interval maps to mea-
sures on the corresponding inverse limit spaces although they remark that such
measures on the inverse limit space apparently are already known, see [24].
For an introduction to measures for interval maps see [1, Sections 6.4-6.6].

12



See also [12]. Kennedy and Stockman ask if there exist other useful measures
one might consider, particularly in non-chaotic situations.

Recall that if f: X — X is a mapping of a metric space and x is a point of
X, then the w-limit set of x is w(x) = Niso{f™(x) | m > i}. If Ais a closed
subset of X and f[A] = A, we call A an invariant set. If A is a closed invariant
subset of X, then the basin of attraction of Ais{x € X |w(x) C A}. A subset
B of X is nowhere dense in X provided B does not contain an open set. A
subset M of X is said to be residual in X provided X — M is the union
of countably many nowhere dense subsets. A closed invariant subset of X is
called a toplogical attractor [32] for f provided the basin of attraction for A

contains a residual subset of X and if A’ is another closed invariant subset
of X then the common part of the basin of attraction of A’ and the basin of
attraction of A is the union of at most countably many nowhere dense sets.
For more information of topological attractors and metric attractors (defined

below), see [32].

One possible tool for analyzing an inverse limit arising in a model from
economics lies in the shift homeomorphism. There are two shifts and they
are inverses of each other. Specifically, below we are referring to the shift
o lgnf — lgnf given by o(x) = (xg, 23, ¢4, ...). Raines asks the following.

Problem 18 (Raines) Let [ be a map of the interval. Find necessary and
sufficient conditions for imf to admit a proper subset that is a topological
attractor for the shift homeomorphism.

Problem 19 (Raines) Let [ be a unimodal map of the interval. Classify all
of the topological attractors for the shift homeomorphism on 1£n f.

Not all models from economics involve one-dimensional spaces. This prompts
the following problem.

Problem 20 (Raines) Let f be a map of [0,1] x [0,1]. Identify topological
attractors in lgnf under the shift homeormorphism.

If X is a metric space with a measure y, f: X — X is a mapping and A is a
closed invariant subset of X, then A is called a metric attractor for f provided
the basin of attraction for A has positive measure and and if A’ is another
closed invariant subset of X then the common part of the basin of attraction
of A" and the basin of attraction of A has measure zero.

Problem 21 (Raines) In the previous two problems, change the phrase topo-
logical attractor to metric attractor.

13



References

[1] Kathleen T. Alligood, Tim D. Sauer, and James A. Yorke, Chaos: An
Introduction to Dynamical Systems. Springer, New York, 1997.

[2] Marcy Barge, Karen Brucks, and Beverly Diamond, Self-similarity in inverse
limit spaces of the tent family. Proc. Amer. Math. Soc. 124 (1996), 3563-3570.

[3] R H Bing, Snake-like continua. Duke Math. J. 18 (1951), 653-663.

[4] Karen Brucks and Henk Bruin, Subcontinua of inverse limit spaces of unimodal
maps. Fund. Math. 160 (1999), 219-246.

[5] Henk Bruin, Planar embeddings of inverse limit spaces of unimodal maps.
Topology Appl. 96 (1999), 191-208.

[6] J.H. Case and R. E. Chamberlin, Characterizations of tree-like continua. Pacific
J. Math. 10 (1960), 73-84.

[7] L. Christiano and S. Harrison, Chaos, sunspots and automatic stabilizers.
Journal of Monetary Fconomics 44 (1999), 3-31.

[8] Howard Cook, W. T. Ingram and Andrew Lelek, Eleven anotated problems
about continua. Chapter 19 in Open Problems in Topology, J. van Mill and
M. Reed, eds., North Holland, Amsterdam, 1990, 295-207.

[9] J. B. Fugate, Decomposable chainable continua. Trans. Amer. Math. Soc. 123
(1966), 460-468.

[10] Chris Good, Robin Knight, and Brian Raines, Non-hyperbolic one-dimensional
invariant sets with uncountably infinite collections of inhomogeneities. Preprint.

[11] O. H. Hamilton, A fixed point theorem for pseudo-arcs and certain other metric
continua. Proc. Amer. Math. Soc. 2 (1951), 173-174.

[12] B. Hunt, J. Kennedy, T. -Y. Li, and H. Nusse, SLYRB measures: natural
invariant measures for chaotic systems. Physica D 170 (2002), 50-71.

[13] W. T. Ingram, An atriodic tree-like continuum with positive span. Fund. Math.
77 (1972), 99-107.

[14) W. T. Ingram and D. D. Sherling, Two continua having a property of
J. L. Kelley. Canad. Math. Bull. 34(1991), 351-356.

[15] W. T. Ingram, Inverse limits on [0, 1] using piecewise linear unimodal bonding
maps. Proc. Amer. Math. Soc. 128 (1999), 279-286.

[16) W. T. Ingram, Inverse Limits. Aportaciones Matematicas, 15 Sociedad
Matematica Mexicana, Mexico, 2000.

[17] W. T. Ingram, Families of inverse limits on [0, 1] using piecewise linear bonding
maps. Topology Proc. 25(2000), 287-297.

14



[18] W. T. Ingram, Invariant sets and inverse limits. Topology Appl. 126(2002),
393-408.

[19) W. T. Ingram, Inverse limits and a property of J. L. Kelley, I
Bol. Soc. Mat. Mezicana 8 (2002), 83-91.

[200 W. T. Ingram, Inverse limits and a property of J. L. Kelley, II.
Bol. Soc. Mat. Mezicana 9 (2003), 135-150.

[21] William T. Ingram and William S. Mahavier, Interesting dynamics and inverse
limits in a family of one-dimensional maps. Amer. Math. Monthly 111(2004),
198-215.

[22] W. T. Ingram and William S. Mahavier, Inverse limits of upper semi-continuous
set valued functions. Houston J. Math. 32(2006), 119-130.

[23] Lois Kailhofer, A classification of inverse limit spaces of tent maps with periodic
critical points. Fund. Math. 177 (2003), 95-120.

[24] . P. Kornfeld, S. V. Fomin, and lakov G. Sinai, Ergodic Theory. Springer, New
York, 1982.

[25] J. Kennedy, D. R. Stockman, Inverse limits and an implicitly defined difference
equation from economics. To appear in Topology Appl..

[26] J. Krasinkiewicz, On one-point union of two circles. Houston .J. Math. 2 (1976),
91-95.

[27] Michael Laidacker, Imbedding compacta into continua. Toplogy Proc. 1 (1976),
91-105.

[28] A. Lelek, Disjoint mappings and the span of spaces. Fund. Math. 55 (1964),
199-214.

[29] William S. Mahavier, Inverse limits with subsets of [0, 1] X [0, 1]. Topology Appl.,
141( 2004), 225-231.

[30] Alfredo Medio, The problem of backward dynamics in economics models.
Preprint.

[31] Alfredo Medio, Invariant probability distributions in economic models: a general
result. Preprint.

[32] Alfredo Medio and Brian Raines, Inverse limit spaces arising from problems in
economics. Preprint.

[33] Alfredo Medio and Brian Raines, Backward dynamics in economics. The inverse
limit approach. Preprint.

[34] Lex G. Oversteegen and E. D. Tymchatyn, Plane strips and the span of continua
(I). Houston J. Math. 8 (1982), 129-142.

[35] Brian Raines, Local planarity in one-dimensional continua. Preprint.

15



[36] Dusan Repovs, Arkadij B. Skopenkov, and Evgenij V. Séepin, On uncountable
collections of continua and their span. Collog. Math. 69(1995), 289-296.

[37] D. R. Stockman, Balanced-budget rules: cycles and complex dynamics. Preprint.

16



