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Abstract. In the years since their introduction in 2004, almost
100 articles and books have been written on the subject of inverse
limits with set-valued functions. Although such inverse limits do
not always produce continua, much traditional continuum theory
arises in investigations of these interesting objects. In this sur-
vey article we discuss several tradtional topics that have arisen in
research into the subject.

1. Introduction

In 2013 the author was invited to give a mini-course at a meeting
in Puebla, Mexico. The theme of that series of lectures was traditional
continuum theory arising in inverse limits with set-valued functions. Here
we revisit that theme and survey some results on the topic of traditional
continuum theory in inverse limits with set-valued functions. We include
a discussion of some additional results that have been obtained in the five
years since the Puebla meeting and we raise questions, some old and some
new, suggested by our theme.

Roughly following the outline of the Puebla talks, this article is di-
vided into sections. In Section 2 we provide some of the background for
the remainder of the paper. In Section 3 we briefly discuss compactness
and connectedness in inverse limits with set-valued functions. In Section
4 we turn our attention to a very traditional topic in the theory of con-
tinua, chainability. We follow this in Section 5 with a look at treelikeness,
another quite traditional property. We close in Section 6 with a look
at a more recent topic of parameterized families of inverse limits with
set-valued functions that arises out of the interaction between continuum
theory and dynamical systems. Questions and problems are sprinkled
throughout the paper. For the perspective of a member of the audience
for the talks in Puebla, see [8].
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2. Definitions and Notation

A compactum is a compact metric space; a continuum is a connected
compactum. If X is a compactum, 2X denotes the collection of all com-
pact subsets of X. If each of X and Y is a compactum, a function
f : X → 2Y , herein denoted f : X ↗ Y , is said to be upper semi-
continuous at the point x of X provided that if V is an open subset of
Y that contains f(x) then there is an open subset U of X containing x
such that if t is a point of U then f(t) ⊆ V . A function f : X ↗ Y
is called upper semi-continuous provided it is upper semi-continuous at
each point of X. If f : X ↗ Y is continuum-valued, we often denote this
by f : X → C(Y ) where C(Y ) denotes the connected elements of 2Y . If
f : X ↗ Y is a set-valued function, by the graph of f , denoted G(f), we
mean {(x, y) ∈ X × Y | y ∈ f(x)}; if f : X ↗ Y and g : Y ↗ Z, then
g ◦ f : X ↗ Z denotes the function given by z ∈ g ◦ f(x) if and only if
there is a point y of Y such that y ∈ f(x) and z ∈ g(y). It is known that
if X and Y are compacta and M is a subset of X × Y such that X is the
projection of M to its set of first coordinates then M is closed if and only
if M is the graph of an upper semi-continuous function [22, Theorem 2.1]
or [13, Theorem 1.2, p. 3]. We call an upper semi-continuous function
f : X ↗ Y surjective provided for each point y of Y there is a point x
in X such that y ∈ f(x). If s = s1, s2, s3, . . . is a sequence, we normally
denote the sequence in boldface type and its terms in italics. Suppose
X is a sequence of compacta and fn : Xn+1 ↗ Xn is an upper semi-
continuous function for each n ∈ N. By the inverse limit of f , denoted
lim←−f , we mean {x ∈

∏
i>0Xi | xi ∈ fi(xi+1) for each positive integer i}.

The spaces in the sequence X are referred to as factor spaces while the
functions in the sequence f are called bonding functions. If {Xa | a ∈ D}
is a collection of sets and A is a subset of D, we denote by πA the natural
projection of

∏
a∈DXa onto

∏
a∈AXa. If a and b are two numbers, we

denote the interval with endpoints a and b by [a, b] whether or not a is
smaller. For the most part, throughout this article we assume the factor
spaces are continua.

Inverse limits with mappings have been employed in continuum theory
for almost sixty years dating back at least to 1959 when Anderson and
Choquet made use of inverse limits to construct a continuum in the plane
no two of whose nondegenerate subcontinua are homeomorphic, [1]. The
ease with which complicated continua can be constructed from simple
objects led to an explosion of results involving inverse limits. Detailing
even a few of these significant developments in continuum theory is beyond
the scope of the present article.
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Inverse limits with set-valued functions are extensions of inverse lim-
its with mappings. The only change involves replacing the continuous
functions for bonding functions with upper semi-continuous set-valued
functions. Inverse limits with set-valued functions subsume inverse limits
with mappings. As a consequence the author distinguishes between the
notions simply by making reference to the nature of the bonding func-
tions in the system. We actually object to the term “generalized inverse
limit” and never make use of it; any generalization is with respect to the
bonding functions with only a slight adjustment in the definition of the
inverse limit to accommodate this change.

3. Compactness and connectedness

Fundamental to the study of any topic in mathematics is an existence
theorem that demonstrates that there are structures in the area under
consideration. For inverse limits with set-valued functions our interests
in continuum theory extend beyond the existence to compactness and con-
nectedness. A set traditionally used in the proof that lim←−f is nonempty
and compact is {x ∈

∏
k>0Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n}. This

set was originally denoted Gn in the early papers on this topic and it is
easy to see that the inverse limit is

⋂
k>0Gk thus reducing the question of

existence and compactness of the inverse limit to the question of the com-
pactness of a nonempty Gn. In case the bonding functions in an inverse
limit with set-valued functions are upper semi-continuous, places to find
a discussion of the compactness of a nonempty Gn include [13, Theorem
1.6, p. 9] and [22, Theorem 111, p. 81]. Connectedness of the inverse limit
is characterized by the connectedness of the set Gn for n = 1, 2, 3, . . . as
seen in our first theorem.

Theorem 3.1. Suppose thatX is a sequence of continua and fi : Xi+1 ↗
Xi is upper semi-continuous for each positive integer i. Then, lim←−f is
connected if and only if Gn is connected for each positive integer n.

It quickly became clear that the projection of Gn into the finite prod-
uct

∏n+1
k=1 Xk holds an equally important place in the area and these

projections, especially G′1 and G′2, possess an advantage in that in many
instances we are able to represent them with meaningful pictures. As
a consequence of the importance of these projections and because when
the factor spaces are continua they are connected if and only if the sets
Gn are connected, we adopt and use throughout this article the nota-
tion G′n = {x ∈

∏n+1
k=1 Xk | xi ∈ fi(xi+1) for 1 ≤ i ≤ n} for the

projection of Gn into the product of the first n + 1 factor spaces, i.e.,
G′n = π{1,2,...,n+1}(Gn). Also, when the bonding functions are upper
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semi-continuous, these sets G′n are precisely the “approximations” whose
compactness yields compactness of the inverse limit. In the literature G′n
has also been denoted by G′(f1, f2, . . . , fn) and we shall make use of both
means of denoting this important set. In an effort to honor Bill Mahavier
(an effort the author applauds) for his introduction of set-valued bonding
functions into the study of inverse limits [25], some have suggested and
some authors have even used the term ‘Mahavier product’ for the sets G′n.
This author has pointed out to anyone who will listen that these sets are
not actually products in any traditional sense and should not be called
products.

Examples show that even when the factor spaces are all [0, 1] and the
graph of the only bonding function in the system is connected, the inverse
limit may not be connected, for example see [13, Example 2.1, p. 15].
However, by assuming the bonding functions are continuum-valued we
obtain a connected inverse limit, see [21] or [22, Theorem 125].

Theorem 3.2. Suppose thatX is a sequence of continua and fi : Xi+1 →
C(Xi) is upper semi-continuous for each positive integer i. Then, lim←−f
is a continuum.

In case the factor spaces are the interval [0, 1], Greenwood and Kennedy
have characterized connectedness of inverse limits with set-valued func-
tions, [9]. The Greenwood-Kennedy result is complicated to state so we
omit it and its proof is long. As a consequence, the search continues for
other simple sufficient conditions on the bonding functions for connectiv-
ity of the inverse limit.

4. Chainable inverse limits

It is known that inverse limits with mappings on chainable continua
produce chainable continua. Unlike inverse limits with mappings, even on
the interval [0, 1] inverse limits with upper semi-continuous bonding func-
tions need not produce chainable continua. Such inverse limits may fail
to be connected [13, Example 1.2], be infinite dimensional [13, Example
1.1], contain triods [13, Example 2.4], or contain simple closed curves as
seen in Example 5.1 below. In this section we discuss some results that
show some set-valued functions on [0, 1] that are not mappings produce
chainable inverse limits.

Like chainability and connectedness, many of the properties that re-
searchers in inverse limits with mappings are accustomed to obtaining
in the inverse limit space fail to hold when the bonding functions are
set-valued even in the case where the factor spaces are [0, 1]. As already
mentioned, with set-valued bonding functions on [0, 1] the inverse limit
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can even be infinite dimensional. See [13] for more information on such
differences. The tools available from the theory of inverse limits with
mappings are available in the literature and many of them can be found
in these sources, [12] and [22]. The following theorem is quite easy to
prove, but it is very useful in attacking certain problems in inverse lim-
its with set-valued functions specifically because it allows us to bring the
power of inverse limits with mappings to bear on the problems we are
trying to solve.

Theorem 4.1. Suppose X is a sequence of compacta and fi : Xi+1 ↗ Xi

is a surjective upper semi-continuous function for each positive integer
i. Then lim←−f is homeomorphic to an inverse limit on the sequence of
spaces X1, G

′(f1), G′(f1, f2), G′(f1, f2, f3), · · · with bonding functions that
are mappings.

The bonding mappings in Theorem 4.1 are restrictions of projections,
π{1,2,...,n}, of products to the factor spaces. This theorem is useful in
proving that the inverse limit has certain properties that are preserved by
inverse limits with mappings by showing that the setsG′n possess the given
property. Such properties include, but are not limited to: chainability,
treelikeness, dimension not greater than n, atrioidicity, and hereditary
unicoherence. Recent applications of Theorem 4.1 include our next two
theorems where inverse limits are shown to be chainable. In the proof of
Theorem 4.2 the sets G′n are shown to be arcs while in Theorem 4.4 the
sets G′n are shown to be chainable continua. Theorem 4.2 may be found
in [17, Section 7]. Theorem 4.4 is found in a recent manuscript currently
available in preprint form, [19].

Theorem 4.2. Suppose a is a number 0 ≤ a < 1 and fa is the upper semi-
continuous function whose graph consists of three straight line intervals,
one from (0, 0) to (1/2, 1), one from (1/2, 1) to (1/2, a), and one from
(1/2, a) to (1, 1). Then, lim←−fa is a chainable continuum if and only if
fna (a) 6= 1/2 for each positive integer n.

We require some definitions to state Theorem 4.4. Suppose z0, z1, z2, . . .
is a sequence of numbers from [0, 1] such that

(1) z0 = 1
(2) zi+1 > zi if i is odd and zi+1 < zi otherwise
(3) some subsequence of z converges to 0 and another subsequence

of z converges to 1.
Let f : [0, 1]↗ [0, 1] be the upper semi-continuous function defined as

follows:
(1) f(0) = [0, 1]
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(2) f(1/2i) = zi for i = 0, 1, 2, . . .
(3) f is a homeomorphism on [1/2i, 1/2i−1] for each i.

We callG(f) the sinusoid determined by z, or, simply, a sinusoid. Sinu-
soids include a traditional sin(1/x)-curve and the curve shown by Dorothy
Sherling [26] not to be homeomorphic to an inverse limit on intervals with
a single mapping. Her example from [26] is the sinusoid determined by the
sequence 1, 0, 1/2, 0, 1, 0, 1, 0, 1/2, 0, 1, 0, 1, 0, 1, 0, 1/2, 0, . . . . The proof of
Theorem 4.4 may be found in [19]. It employs an old theorem of R H Bing
that characterizes chainability among hereditarily deomposable continua,
[3]. A continuum M is hereditarily unicoherent provided if A and B are
subcontinua of M with a point in common then A ∩ B is connected. A
continuum M is a triod provided there is a subcontinuum H of M such
that M −H has (at least) three components; a continuum is atriodic pro-
vided it does not contain a triod. The following theorem of Bing [3] is
key in the proof of Theorem 4.4 in [19].

Theorem 4.3. (Bing) Suppose M is an hereditarily decomposable con-
tinuum. Then M is chainable if and only if it is atriodic and hereditarily
unicoherent.

Theorem 4.4. Suppose f is a sequence of upper semi-continuous func-
tions such that, for each positive integer i, fi : [0, 1] ↗ [0, 1] has a graph
that is a sinusoid. Then lim←−f is chainable.

4.1. C-sets and monotone mappings. The proof of Theorem 4.4 also
makes use of the notions of a C-set, terminal subcontinua, and monotone
mappings. A subset K of a continuum M is a C-set in M provided it
is true that if H is a subcontinuum of M containing a point of K and a
point ofM−K then K ⊆ H, see [11] for more on C-sets. A subcontinuum
C of a continuum M is said to be terminal in M provided if H and K
are subcontinua of M each intersecting C then H ⊆ K ∪ C or K ⊆
H ∪ C. Terminal continua were introduced by Fugate; more information
on terminal continua see [10]. Some results needed to establish Theorem
4.4 include many of the following theorems.

Theorem 4.5. If A and B are chainable continua and A ∩ B is a con-
tinuum that is terminal and a C-set in both A and B, then A ∪ B is
chainable. Moreover, A ∩B is a C-set in A ∪B.

Theorem 4.6. Suppose H is a subcontinuum of the continuum M and K
is a C-set in H. If there is an open subset U of M such that K ⊆ U ⊆ H,
then K is a C-set in M .

A mapping between continua is called monotone provided point in-
verses are connected. It is well known that preimages of continua under
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monotone maps are continua. Below are listed some results from [19] that
relate monotone maps and C-sets.

Theorem 4.7. Suppose each ofM and N is a continuum and f : M � N
is a mapping. If x is a point of N such that f−1(x) is a C-set in M and
H is a subcontinuum of M containing a point of f−1(x) such that f(H)
is nondegenerate then f−1(x) is a subset of H.

Theorem 4.8. Suppose each ofM and N is a continuum and f : M � N
is a monotone mapping such that f−1(x) is a C-set in M for each x
in N . If H is a subcontinuum of M and f(H) is nondegenerate, then
f−1(f(H)) = H.

Theorem 4.9. Suppose a and b are numbers with a < b, M is a con-
tinuum and f : M � [a, b] is a monotone mapping such that f−1(t) is a
C-set in M for each t in [a, b]. Then, f−1(a) and f−1(b) are terminal in
M .

Theorem 4.10. Suppose M and N are continua, N is hereditarily de-
composable, and f : M → N is a monotone mapping such that f−1(x) is
a C-set in M for each x in N . If H is a subcontinuum of M such that
f(H) is nondegenerate, then H is decomposable.

Theorem 4.11. Suppose M and N are continua, N is hereditarily de-
composable, and f : M → N is a monotone mapping such that f−1(x)
is an hereditarily decomposable C-set in M for each x in N . Then, M is
hereditarily decomposable.

Theorem 4.12. Suppose M and N are continua, N is atriodic, and
f : M → N is a monotone mapping such that f−1(x) is an atriodic C-set
in M for each x in N . Then, M is atriodic.

Theorem 4.13. Suppose M and N are continua, N is hereditarily uni-
coherent, and f : M → N is a monotone mapping such that f−1(x) is
an hereditarily unicoherent C-set in M for each x in N . Then, M is
hereditarily unicoherent.

4.2. Theorems and questions about C-sets. Bing’s theorem and the
preceding results on C-sets and monotone mappings lead to Theorem 4.14
and Question 4.15 from [19]. More information on the question and its
background is contained in [19].

Theorem 4.14. Suppose M is a continuum, N is an hereditarily decom-
posable chainable continuum, and f : M � N is a monotone mapping
such that f−1(x) is an hereditarily decomposable chainable C-set in M
for each x in N . Then, M is chainable.
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Traditionally, questions abound about the chainability of a continuum
when its image under a monotone mapping is chainable, see [5, Problem
105, p. 382] or [7] for more on such questions. The result in Theorem 4.14
suggests the following question along these lines. This question is posed
in [19].

Question 4.15. If M is a 1-dimensional atriodic continuum and f is a
monotone mapping of M onto a chainable continuum N such that point-
inverses are chainable C-sets in M , is M chainable?

Theorem 4.14 yields that the answer to Question 4.15 is “yes” in case
N as well as all point inverses are hereditarily decomposable chainable
continua even without assuming M is atriodic and 1-dimensional.

4.3. More on chainability. In a nice paper in 2014, Kelly [23] showed
that a class of set-valued functions that he calls irreducible functions pro-
duce chainable continua in systems on [0, 1] with a single bonding function.
His results confirm the chainability of Example 5.4 of [15] and extend it
considerably. We conclude this section with Kelly’s result. Notably, he
is able to characterize chainability in systems with a single irreducible
bonding function by the chainability of G′2 as well as by conditions on the
graph of the function that are easy to check.

Let Λ be a closed subset of [0, 1] containing 0 and 1 such that Λ \ Λ′ =
Λ. A collection of mappings {fλ : [0, 1] → [0, 1]}λ∈Λ is called irreducible
provided:

(1) 0 ∈ fλ([0, 1]) if and only if λ = 0 and 1 ∈ fλ([0, 1] if and only if
λ = 1,

(2) if 0 /∈ Λ′ the f−1
0 (0) = {0} or f−1

0 (0) = {1},
(3) if 1 /∈ Λ′ the f−1

0 (1) = {0} or f−1
0 (1) = {1},

(4) if λ, µ ∈ Λ with λ < µ then fλ(y) 6= fµ(y) for all y ∈ (0, 1), and
G(fλ) ∩G(fµ) 6= ∅ if and only if (λ, µ) ∩ Λ = ∅, and

(5) if λ is a sequence of points of Λ that converges to λ then the
sequence fλ1

, fλ2
, fλ3

, · · · converges uniformly to fλ.
A function F : [0, 1]↗ [0, 1] is called irreducible provided there is an ir-

reducible collection {fλ : [0, 1]→ [0, 1]}λ∈Λ such that F (x) =
⋃
λ∈Λ f

−1
λ (x)

for each x in [0, 1].

Theorem 4.16. (Kelly) If F : [0, 1] ↗ [0, 1] is an irreducible function,
then the following are equivalent:

(1) lim←−F is chainable.
(2) G′2 is chainable.
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(3) G(F ) does not contain a simple closed curve and both F (0) and
F (1) belong to {{0}, {1}, [0, 1]}.

5. Treelikeness

Many inverse limits with set-valued functions that are continua but not
chainable turn out to be treelike. Early in its development, treelikeness
was defined by covers by tree chains. Treelikeness has been characterized
in a number of ways including being homeomorphic to an inverse limit
on trees. In order for the reader to appreciate the complexities of the
problem of determining treelikeness we mention the following example of
an upper semi-continuous function on [0, 1] whose graph is the union of
two surjective homeomorphisms yet the inverse limit is not treelike.

Example 5.1. Let h1 be the homeomorphism of [0, 1] whose graph con-
sists of two straight line intervals, one from (0, 0) to (1/2, 3/4) and one
from (1/2, 3/4) to (1, 1). Let h2 be the homeomorphism whose graph con-
sists of two straight line intervals, one from (0, 1) to (1/2, 3/4) and one
from (1/2, 3/4) to (1, 0). Let f : [0, 1]↗ [0, 1] be the function whose graph
is h1 ∪ h2. Then, lim←−f contains a simple closed curve and consequently
is not treelike.

In [17] the author demonstrated the chainability of inverse limits with
many members of a parameterized family of upper semi-continuous func-
tions. The functions in the family were first mentioned above in Theorem
4.2 and may be described as follows: for 0 ≤ a < 1 let fa : [0, 1]→ C([0, 1])
be the function whose graph consists of three straight line intervals, one
from (0, 0) to (1/2, 1), one from (1/2, 1) to (1/2, a), and one from (1/2, a)
to (1, 1). It is known that lim←−fa is treelike for each a ∈ [0, 1], [16, Corol-
lary 4.1]. See also Theorem 5.8 below. Had we allowed the parameter
a to be 1, the graph consists of only two straight line intervals and the
inverse limit is an arc.

Theorem 5.2. If 0 ≤ a < 1 then lim←−fa is treelike.

One class of set-valued functions that has received some attention is the
class of functions whose graphs are a union of two mappings. Example 5.1
above is such a function. In our next example we consider another member
of the class. It is known that treelike continua are unicoherent. Thus, we
can demonstrate that an inverse limit is not treelike by showing that it is
not unicoherent. Consider the following example from [14, Example 4.3].

Example 5.3. Let f1 be the identity on [0, 1] and f2 be the piecewise
linear map that passes through (0, 1/2), (1/4, 1), (1/2, 1/2), and (1, 0). Let
f = f1 ∪ f2. Then, M = lim←−f is not unicoherent.
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Proof. Let H be the subcontinuum ofM that is the inverse limit of the se-
quence f2, f2, f1, f1, f1, . . . andK be the inverse limit of f1, f2, f1, f1, f1, . . . .
Then, H ∩K = {(1/2, 1/2, 1/2, · · · ), (1/2, 1/2, 0, 0, . . . )}. �

A sufficient condition for the treelikeness of an inverse limit of a set-
valued function that is the union of two mappings is found in the following
theorem from [14, Theorem 3.4, p, 20]

Theorem 5.4. If f1 and f2 are mappings of [0, 1] into [0, 1] whose only
coincidence point is a common fixed point p such that f−1

1 (p) = f−1
2 (p) =

{p} and f = f1 ∪ f2 is surjective, then lim←−f is treelike.

Relative to this theorem, note that the only coincidence point of the
maps f1 and f2 in Example 5.3 is a common fixed point 1/2 but f−1

2 (1/2) =
{0, 1/2)}.

Some traditional continuum theory is used in the proof of Theorem 5.4,
the notion of clumps that Howard Cook introduced in 1974 in [4]. Stating
all of the definitions to give full details on clumps and their use in the
proof is beyond the scope of this survey. The interested reader is referred
to the Cook’s paper for more details about clumps along with [14] for the
way they are used in obtaining treelikeness in Theorem 5.4.

One quite useful characterization of treelikeness comes from the theory
of shape where treelikeness is characterized by the properties of trivial
shape and having dimension one. Charatonik and Roe proved a vital
theorem to demonstrating treelikenss of inverse limits on [0, 1] when they
proved the following theorem, [6], which reduces the treelikeness problem
for inverse limits on [0, 1] with interval-valued functions to a dimension
problem.

Theorem 5.5. Suppose fi : [0, 1] → C([0, 1]) is upper semi-continuous
for each positive integer i. Then, lim←−f has trivial shape.

Nall observed that a companion theorem to the Charatonik-Roe theo-
rem holds, see [20] where one can find a different but equivalent statement
of Nall’s theorem along with its proof.

Theorem 5.6. (Nall) Suppose fi : [0, 1] → C([0, 1]) is upper semi-
continuous for each positive integer i. Then, lim←−f

−1 has trivial shape.

There are several results in the literature having the flavor of Theo-
rems 5.5 and 5.6. For example it is known that if f : [0, 1] ↗ [0, 1] is a
surjective upper semi-continuous function then lim←−f is connected if and
only if lim←−f

−1 is connected, [13, Theorem 2.3, p. 16]. Thus, we pose the
following question.
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Question 5.7. Suppose f : [0, 1] ↗ [0, 1] is a surjective upper semi-
continuous function such that lim←−f is treelike. Is lim←−f

−1 treelike?

A major obstacle to controlling dimension in inverse limits with set-
valued functions is found in graphs that contain horizontal intervals (flat
spots). This has been known for virtually the entire life of the study of
these inverse limits. One of the earliest examples that was considered was
the function f : [0, 1]↗ [0, 1] such that f(t) = 0 for t > 0 and f(0) = [0, 1]
where lim←−f is infinite dimensional. For interval-valued functions, roughly
speaking, we get treelikeness provided flat spot values do not iterate to a
point with a nondegenerate value. The simplest theorem we know along
these lines is the following.

Theorem 5.8. If f : [0, 1]→ C([0, 1]) is upper semi-continuous and G(f)
contains no horizontal interval then lim←−f is treelike.

Recently, Mark Marsh [28] has looked further into treelikenss of inverse
limits on [0, 1] with interval-valued functions and subsequently he has
established a characterization in [29].

6. Inverse limits with parameterized families

A topic somewhat less traditional in continuum theory than the proper-
ties we have examined thus far is the study of inverse limits with members
of parameterized families of functions. However, the topic has now been
under scrutiny for close to twenty-five years or more. Closer ties between
continuum theory and the theory of dynamical systems are chiefly respon-
sible for the increased interest in parameterized families. In 1967 Smale
published an article, [30], in the Bulletin of the American Mathematical
Society in which he described his famous horseshoe. Continuum theorists
were struck by the similarity to a construction of the familiar Brouwer-
Janiszewski-Knaster continuum (B-J-K continuum), [24, Example 1, pp.
204–205] (n.b., footnote (3) on page 204). In the 1980s questions from the
theory of dynamical systems began to appear in continuum theory. The
author’s first recollection of such a question was by Marcy Barge regarding
whether the Henón attractor at certain parameter values is homeomor-
phic to the B-J-K continuum. In 1996 Barge and the author published a
paper [2] containing an investigation of inverse limits on [0, 1] using single
bonding maps chosen from the parameterized logistic family of mappings.
Over the years many research articles have been devoted to the topology
of inverse limits with bonding maps from the parameterized tent family of
maps, fλ : [0, 1] → [0, 1] given by fλ(t) = min{2λt, 2λ(1 − t)}. Although
the maps from the tent family have been shown to produce different in-
verse limits for differing parameter values, current research is still involved
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in deciding whether this remains true of the core maps in the tent fam-
ily. For inverse limits with set-valued functions, in [17] the author has
studied the effects of changing the parameter in a parameterized family
of set-valued functions inspired by the family of tent maps. The members
of the family studied in [17] all produce treelike continua so the article
concentrated on determining when the inverse limits are chainable.

Let a be a number, 0 ≤ a < 1 and let fa be the upper semi-continuous
set-valued function whose graph consists of three straight line intervals,
one from (0, 0) to (1/2, 1), one from (1/2, 1) to (1/2, a), and one from
(1/2, a) to (1, 1). We have already seen in the section on treelikeness,
Section 5, that each fa produces an inverse limit that is treelike. Theorem
4.2 characterizes chainability in terms of the parameter. Our next theorem
addresses the nature of the continua in this family that are chainable, see
[17, Example 7.1].

Theorem 6.1. Suppose a is a number, 0 ≤ a < 1/2 and fna (a) 6= 1/2 for
each positive integer n. Then, lim←−fa is the closure of a topological ray
with remainder lim←− ga where ga = fa|[a, 1]

There are uncountably many values for a, 0 ≤ a < 1/2 such that lim←−fa
is chainable, [17, Remark 7.1, p.65]. We pose the following question from
that same article, [17, Question 7.1, p. 65].

Question 6.2. If 0 ≤ a < b ≤ 1/2, are lim←−fa and lim←−fb topologically
different?

It is known for the parameterized tent family of mappings that two
maps with different parameters greater than 1/2 produce topologically
different continua. Even though maps with parameter values above 1/2
in that family produce an inverse limit that is a topological ray with
remainder the core of the inverse limit, the question of whether the cores
are all topologically different remains unsettled. This fact leads us to look
at cores for the family of Theorem 6.1. Changing fa|[a, 1] into an upper
semi-continuous function on [0, 1] leads us to the following two-parameter
family of maps and a companion to Question 6.2.

Let b, c be numbers, 0 ≤ b < 1 and 0 < c < 1. Define gb,c to be the
upper semi-continuous set-valued function whose graph consists of three
straight line intervals, one from (0, b) to (c, 1), one from (c, 1) to (c, 0),
and one from (c, 0) to (1, 1). Theorem 5.8 yields that each member of this
two-parameter family produces a treelike continuum in its inverse limit.
We pose the following question, see [17, Question 8.1].

Question 6.3. Suppose c is a number, 0 < c < 1. If a, b are numbers,
0 ≤ a < b < 1 are lim←− ga,c and lim←− gb,c topologically different?
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It is known that if gnb,c(0) = c for some positive integer n then lim←− gb,c] is
a decomposable continuum that is not chainable even though it is treelike,
see [17, Example 9.1].

7. Additional topics

After reviewing a draft of this article, Mark Marsh suggested that the
author mention something about two other traditional topics in contin-
uum theory as they relate to inverse limits with set-valued functions, plane
embeddings and the fixed point property. Not much is known about either
of these topics.

One of the few published results on plane embeddings is found in a
discussion of a surprisingly complicated inverse limit on [0, 1] where the
only bonding function has a graph consisting of two straight line intervals,
one from (0, 0) to (0, 1) and one from (0, 1) to (1, 0), see [13, p. 33].
There it is shown that the inverse limit is nonplanar because it contains
uncountably many mutually exclusive triods.

There are published questions about the fixed point property in [13,
Problems 6.53, 6.54, and 6.55] but, insofar as the author knows, the only
results are found in Marsh’s papers, [27] and [28]. We refer the inter-
ested reader to Marsh’s papers for further information. Marsh poses the
following interesting question in [27, Question 19, p. 225].

Question 7.1. (Marsh) Do all treelike continua obtainable as inverse
limits on [0, 1] with interval-valued functions have the fixed point property?

Other traditional topics in continuum theory get some mention in [13,
Chapter 6]. These include hyperspaces (Problems 6.47 and 6.48), span
(Problem 6.52), and the Property of Kelley (Problem 6.56). The author
knows of no progress on any of these topics.
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