

	Math 204		1Z				
Exan	Exam 3	Name:	Name: <u>Key</u>				
	Sections ChiF	Section:	C	or	F	(circle one)	
	Spring 2008	l					

Read the directions carefully. Write <u>neatly</u> in pencil and <u>show all your work</u> (you will only get credit for what you put on paper). Each question is worth 20 points. <u>DO NOT</u> use decimals in any intermediate step Please do not share calculators during the test. The last page contains your Laplace tables. If you have trouble during the test, feel free to ask me for help. Score:_____

1. Solve the integrodifferential equation
$$y'(t) + 3\int_0^t \cos(\tau)y(t-\tau)d\tau = \sin(t)$$
, $y(0) = 0$.

، ۱

• '

1. Take Laplace transform of both sides

$$diy'(t) \leq + 3dicos(t) * y(t) \leq = disin(t) \leq sides$$

 $signature (signature (signature)) = \frac{1}{s^{2}+1}$
2. Solve for Y(s)
 $\binom{s+3s}{s^{2}+1}Y(s) = (\frac{s(s^{2}+4)}{s^{2}+1})Y(s) = \frac{1}{s^{2}+1}$
 $=> Y(s) = \frac{1}{s^{2}+1}(\frac{s^{2}+1}{s(s^{2}+4)}) = \frac{1}{s(s^{2}+4)}$
3. Partial Fractions
 $\frac{1}{s(s^{2}+4)} = \frac{A}{s} + \frac{Bs+C}{s^{2}+4} => 1 = A(s^{2}+4) + Bs^{2} + Cs$
 $\leq s=0 => 4A=1 =>A=\frac{1}{4}$
 $\leq s=2i => 1+0i = -4B+2iC => B=-\frac{1}{4}$
 $\leq s=2i => 1+0i = -4B+2iC => B=-\frac{1}{4}$
 $= \frac{1}{4}d^{-1}\{\frac{1}{5}\{\frac{1}{5}] - \frac{1}{4}d^{-1}\{\frac{5}{5^{2}+4}\}$
 $= \frac{1}{4} - \frac{1}{4}cos(2t)$

2. Consider the IVP $y'' + y = \delta(t - \frac{\pi}{2}) + \delta(t - \frac{3\pi}{2})$, y(0) = y'(0) = 0.

•

A. Solve the IVP.
1. Take the Laplace transform of both sides

$$a^{2} \{y^{11} \int f d^{2} y f = d^{2} \{d(t - \frac{\pi}{2}) f + d^{2} \{d(t - \frac{3\pi}{2}) f \}$$

$$s^{2} Y(s) - sy(s) - y'(s) + Y(s) = e^{-\frac{\pi}{2}s} + e^{-\frac{3\pi}{2}s}$$
2. Solve for Y(s)

$$(s^{2} + 1)Y(s) = e^{-\frac{\pi}{2}s} + e^{-\frac{3\pi}{2}s}$$

$$= Y(s) = e^{-\frac{\pi}{2}s} + e^{-\frac{3\pi}{2}s} = e^{-\frac{\pi}{2}s} F(s) + e^{-\frac{3\pi}{2}s} F(s)$$
where $F(s) = \frac{1}{s^{2} + 1}$
3 Find $f(t)$

$$f(t) = sin(t)$$
4. Take the inverse Laplace of both sides

$$y(t) = d^{-1} \{e^{-\frac{\pi}{2}s} F(s) f + d^{-1} \{e^{-\frac{3\pi}{2}s} F(s) f \}$$

$$= f(t - \frac{\pi}{2})U(t - \frac{\pi}{2}) + f(t - \frac{3\pi}{2})U(t - \frac{3\pi}{2})$$

$$= sin(t - \frac{\pi}{2})U(t - \frac{\pi}{2}) + sin(t - \frac{3\pi}{2})U(t - \frac{3\pi}{2})$$

$$= \int_{-\cos(t)}^{\infty} (cs(t)) + cos(t)U(t - \frac{3\pi}{2})$$

$$= \int_{-\cos(t)}^{\infty} (cs(t)) + cos(t)U(t - \frac{3\pi}{2})$$

B. Evaluate the following.

$$y(\frac{\pi}{4}) = 0$$

$$y(\pi) = -\cos(\pi) = -(-1) = 1$$

$$y(\frac{5\pi}{2}) = 0$$

3. Solve the IVP
$$\bar{x}' = \begin{bmatrix} 2 & 4 \\ -1 & 6 \end{bmatrix} \bar{x}, \ \bar{x}(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

I. Find λ
 $o: det(A - \lambda I) = \lambda^2 - (b+2)\lambda + 16 = (\lambda - 4)^2 = \lambda = 4, 4$
2. Find \vec{k}
 $For \lambda = 4, (A - \lambda I)\vec{k} = \vec{0}$
 $\begin{bmatrix} 2 - 4 & 4 & | & 0 \end{bmatrix} = \lambda \begin{bmatrix} -2 & 4 & -0 \\ -1 & 6 - 4 & | & 0 \end{bmatrix} = \lambda \begin{bmatrix} -2 & 4 & -0 \\ -1 & 2 & | & 0 \end{bmatrix} = \lambda - \alpha_1 + 2\alpha_2 = 0$
 $\alpha_1 = 2\alpha_2$
 $= \lambda \vec{k} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 2\alpha_2 \\ \alpha_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \lambda \vec{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} e^{4t} \quad \text{Fv} = 1$
3. Find \vec{P}
 $For \lambda = 4, (A - \lambda I)\vec{P} = \vec{k}$
 $\begin{bmatrix} 2 - 4 & 4 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix} -2 - 4 & -1 \\ -1 & 2 \end{bmatrix} = \lambda \begin{bmatrix}$

. *

..

4. Solve
$$\bar{x}' = \begin{bmatrix} 6 & -1 \\ 5 & 2 \end{bmatrix}^{\frac{1}{2}}$$
.
1. Find λ
 $0 = det(A - \lambda I) = \lambda^{2} - (6+2)\lambda + 17 = \lambda^{2} - 8\lambda + 17$
 $\implies \lambda = 8 \pm \sqrt{64^{-4}(17)} = 8 \pm 2i = 4 \pm i$, use $\lambda = 4 \pm i$
2. Find \overline{K}
 $\overline{Dr} = \lambda = 4 \pm i$, $(A - \lambda I)\overline{K} = \overline{\partial}$
 $\begin{bmatrix} 6 - (4 \pm i) & -1 \\ -1 & 0 \end{bmatrix} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (4 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -5 & 2 - (2 \pm i) \end{bmatrix}^{0} = \sum \begin{bmatrix} 2 - i & -1 \\ -1 & 2$

x

•

•

5. Given that
$$\Phi(t) = \begin{bmatrix} 3e^t & e^{-t} \\ e^t & e^{-t} \end{bmatrix}$$
 is a fundamental matrix for $\overline{x}' = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix} \overline{x}$, find the

general solution to the nonhomogeneous system $\bar{x}' = \begin{bmatrix} 2 & -3 \\ 1 & -2 \end{bmatrix} \bar{x} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2i}$.

$$I. Find \underline{\Phi}(t) = \begin{bmatrix} 3e^{t} & e^{-t} \\ e^{t} & e^{-t} \end{bmatrix}$$
$$= > \vec{x}_{n} = \underline{\Phi}(t)\vec{C}$$
$$2. Find \underline{\Phi}^{-1}(t)$$
$$det \underline{\Phi}(t) = 3 - 1 = 2$$
$$= > \underline{\Phi}^{-1}(t) = \frac{1}{2} \begin{bmatrix} e^{-t} & -e^{-t} \\ -e^{t} & 3e^{t} \end{bmatrix}.$$
$$3. Find \vec{x}_{p}$$
$$\vec{x}_{p} = \underline{\Phi}(t) \int \underline{\Phi}^{-1}(t)\vec{F}(t)dt = \frac{1}{2} \underline{\Phi}(t) \int \begin{bmatrix} e^{-t} & -e^{-t} \\ -e^{t} & 3e^{t} \end{bmatrix} \begin{bmatrix} e^{2t} \\ e^{2t} \end{bmatrix} dt$$
$$= \frac{1}{2} \underline{\Phi}(t) \int \begin{bmatrix} e^{t} - e^{t} \\ -e^{3t} + 3e^{3t} \end{bmatrix} dt = \frac{1}{2} \underline{\Phi}(t) \int \begin{bmatrix} 0 \\ 2e^{3t} \end{bmatrix} dt$$
$$= \frac{1}{2} \begin{bmatrix} 3e^{t} & e^{-t} \\ e^{-t} \end{bmatrix} \begin{bmatrix} 0 \\ \frac{2}{3}e^{3t} \end{bmatrix} = \frac{1}{2} \begin{bmatrix} \frac{2}{3}e^{2t} \\ \frac{2}{3}e^{2t} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t}$$
$$4. GS: \vec{x}(t) = \vec{x}_{h} + \vec{x}_{p}$$
$$= \begin{bmatrix} 3e^{t} & e^{-t} \\ e^{t} & e^{-t} \end{bmatrix} \vec{C} + \frac{1}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{2t}$$

Bonus (10 points): Use the Laplace transform to solve the given system of differential equations.

$$\frac{d^{2}x}{dt^{2}} + 3\frac{dy}{dt} + 3y = 0$$
, where $x(0) = x'(0) = y(0) = 0$.

$$\frac{d^{2}x}{dt^{2}} + 3y = e^{-t}$$
1. Take Laplace of both equations

$$\begin{cases} x'' + 3d y' + 3d$$

3. Find x(t) $x(t) = z^{-1} x(s) = \frac{1}{2!} z^{-1} \frac{z!}{s^{2+1}} = \frac{1}{2}t^{2}$

4. Find y(t)
y(t) =
$$\frac{1}{3}(e^{-t} - x''(t)) = \frac{1}{3}(e^{-t} - 1)$$

Sol:
$$\begin{cases} x(t) = \frac{1}{2}t^{2} \\ (y(t) = \frac{1}{3}(e^{-t} - 1)). \end{cases}$$

•

ì