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Abstract 
 

The cell membrane is a biological boundary that separates the interior of cells 
from the extracellular environments. While small non-polar molecules readily 
cross cell membranes, the cell membrane precludes the passage of most 
macromolecules, including proteins, DNAs, and RNAs. However, basic 
cell-penetrating peptides (CPPs) can enter cells, and can co-transport an array of 
normally impermeable molecules into cells. In this report, we identified factors 
that determine the mechanisms of CPPs entry. Three arginine-rich CPPs (R9,  
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SR9,and HR9) were studied in live human, plant, and bacterial cells. 
Pharmacological and physical treatments were used to elucidate the nature of the 
transport mechanism. The route of internalization was relatively unaffected by 
cell type, but was dependent on the nature of the CPP as well as the nature of the 
transported cargo. 
 
Keywords: Blue fluorescent protein (BFP), Cell-penetrating peptide (CPP), 
Direct membrane translocation, Energy-dependent Endocytosis, Green fluorescent 
protein (GFP), Macropinocytosis, Protein transduction domain (PTD) 
 
Abbreviations: BFP, blue fluorescent protein; CPP, cell-penetrating peptide; 
EIPA, 5-(N-ethyl-N-isopropyl)-amiloride; GFP, green fluorescent protein; N/P, 
nitrogen/phosphate; NEM, N-ethylmaleimide; PBS, phosphate buffered saline; 
QD, quantum dot; R9, nona-arginine; SD, standard deviation; SR9, synthetic 
nona-arginine; Tat, transactivator of transcription 
 
 
 
1. Introduction 
 

The cell membrane, composed of a bilayer of phospholipids and proteins, 
provides a selectively permeable hydrophobic barrier that isolates the cell from 
the hostile extracellular environment. Membrane permeability depends on the 
size and polarity of substances, as well as the existence of specific intrinsic 
membrane transporters. In general, macromolecules, such as proteins and 
DNAs, are unable to cross cell membranes. Instead, various endocytic 
pathways, including lipid raft-dependent processes, provide the major routes 
for cellular entry of exogenous macromolecules.1 Thus, the cell membrane is a 
gate that controls the movement of materials in and out of cells. The membrane 
is also involved in numerous cellular processes, such as signal transduction, 
cellular potential maintenance, nucleation of multiple protein complexes, and 
cytoskeleton anchoring. Transport of molecules across the membrane is quite 
complex as it is affected by the phospholipid, glycolipid, cholesterol, and 
protein composition of the membrane. Cellular entry processes are also species 
dependent.1 

In 1988, transactivator of transcription (Tat) protein from the human 
immunodeficiency virus type 1 (HIV-1) was shown to be capable of 
overcoming the hydrophobic barrier of the plasma membrane during cellular 
internalization of molecules.2,3 The domain in the Tat protein that mediates 
cellular entry contains 11 amino acids (YGRKKRRQRRR), and the number of 
basic residues was thought to correlate with its efficiency of membrane 
penetration.4,5 Subsequently, short peptides derived from the key domain in the 
Tat protein that mediates membrane penetration were synthesized and tested. 
These peptides were termed cell-penetrating peptides (CPPs) or protein 
transduction domains (PTDs).4 CPPs can be classified into three groups:  
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protein-derived peptides, model peptides, and designed peptides.6 Tat is an 
example of protein-derived CPP. Peptides with repeat motifs or poly-residues 
are model CPPs. The amphipathic peptide MPG is an example of a designed 
CPP insofar as it is a chimeric protein containing domains from multiple 
peptides.6 Studies have demonstrated that model CPPs containing 
nona-arginine (R9) residues are 20-fold more efficient at transduction.7,8 
Moreover, CPPs are efficient shuttles of cargoes, such as proteins, nucleic 
acids, nanoparticles, and liposomes. These cargoes maintain their biological 
activities after being transported into cells.9,10 The size of the cargoes can be up 
to 200 nm in diameter.11 The internalization kinetics of CPPs is rapid, with a 
first-order rate constant of 0.007 sec-1, with no toxicity observed at 
concentrations up to 100 μM.12 

Despite many studies using various biological and biophysical techniques, 
our understanding of the mechanisms of CPP entry remains incomplete and 
controversial. Low temperature reduced sulfated proteoglycans on cell surface 
that are involved in endocytosis, but did not stop the internalization of CPPs.5 
Their data further suggested that CPPs enter cells by an energy-independent 
pathway. Additional studies indicated that CPPs enter cells via clathrin-, 
caveolin-dependent endocytosis, or actin-dependent macropinocytosis.13–20 
Compositions of CPPs, types of cells, nature of cargoes, and organisms are 
factors that might influence the cellular uptake mechanisms.13–20 Previously, 
we demonstrated that arginine-rich CPPs, such as R9, can deliver biologically 
active macromolecules into different kinds of cells and species following 
covalent, noncovalent, or combined covalent and noncovalent association.21–38 
Our data suggested that internalization of CPPs covalently linked with cargoes, 
such as R9-green fluorescent protein (GFP) fusion protein, was neither 
clathrin-dependent nor caveolae-dependent.21 In certain types of cells, 
macropinocytosis was the major route of entry when CPP and cargo were 
associated noncovalently.24–28 In some cases, penetration of CPPs with their 
cargoes was mediated by multiple pathways.29,30,32,34 

In this report, we investigate transduction efficiency of various types of CPPs, 
cargoes, and types of cells from various organisms. Pharmacological and physical 
modulators of endocytosis were used to identify the molecular mechanisms of 
cellular entry. We identify multiple factors that influence the preferred mechanism 
of cellular uptake of CPP/cargo complexes. 
 
 
2. Materials and Methods 
 
2.1. Plasmid construction and protein preparation 

We constructed a pR9 plasmid containing a hexa-histidine (6His) and an 
R9 sequence under the control of the T7 promoter, and a pR9-GFP plasmid 
containing an additional coding region of GFP as previously described.21 A 
pQE8-GFP plasmid containing the coding sequence of GFP under the control  
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of the T5 promoter was kindly provided by Dr. Michael B. Elowitz 
(Rockefeller University, NY, USA).21 The pHBT-sGFP(S65T)-NOS plasmid 
(GenBank Accession No. EF090408)  containing an engineered GFP gene 
under the control of the 35S cauliflower mosaic virus enhancer fused to the 
basal promoter of the maize C4PPDK gene was kindly provided by Dr. Jen 
Sheen (Harvard University, MA, USA).25 Plasmid DNA was purified using a 
Nucleobond AX100 Kit (Machery-Nagel, Duren, Germany). All constructions 
were verified by DNA sequencing. 

For protein expression, pR9, pR9-GFP, and pQE8-GFP plasmids were 
transformed into Escherichia coli and induced as previously described.39 
Expressed proteins were then purified, concentrated and quantified using a 
Protein Assay Kit (Bio-Rad, Hercules, CA, USA). 

 Both synthetic nona-arginine (SR9) and histidine-modified nona-arginine 
(HR9) peptides (MDBio, Taipei, Taiwan) with more than 95% purity were 
described previously.24,35 Quantum dots (QDs) with green fluorescent emission at 
525 nm were composed of CdSe/ZnS core-shell and carboxyl-functionalized 
groups on surface (eFluor 525NC, eBioscience, San Diego, CA, USA). A series of 
concentrations of SR9 or HR9 were premixed with QDs and then incubated at 
37°C for 2 h. The optimal molecular ratio of 60 was used in subsequent 
experiments. 
 
2.2. Cell culture 

Human A549 lung cancer cells (American Type Culture Collection, 
Manassas, VA, USA; CCL-185) were grown in Roswell Park Memorial 
Institute (RPMI) 1640 medium (BioWest, Nuaille, France) supplemented with 
10% heat inactivated (56°C for 30 min) bovine serum (Gibco, Invitrogen, 
Carlsbad, CA, USA). Cells were cultured in a humidified 5% CO2 and 95% air 
incubator at 37°C as previously described.26 

For plant sample, root-tip cells of mung bean (Vigna radiata L.) were 
prepared as previously described.25 

 For cyanobacteria (blue-green algae) culture, both Synechocystis sp. PCC 
6803 (American Type Culture Collection, 27184) and Synechococcus elongatus 
PCC 7942 (ATCC, 33912) (kindly provided by Dr. Yuh-Jang Shieh, Academia 
Sinica, Taipei, Taiwan) were grown in BG-11 medium with mild shaking at 50 
rpm and regular illumination at 28°C.28 
 
2.3. Protein transduction and treatment of endocytic modulators 

For covalent protein transduction, A549 cells were treated with phosphate 
buffered saline (PBS), GFP, or R9-GFP for 30 min at 37°C, followed by 
treatment of Hoechst 33342 (Invitrogen, Carlsbad, CA, USA) as previously 
described.35 In the investigation of noncovalent protein transduction, R9 or 
SR9 peptide was mixed with GFP at a molecular ratio of 3:1 at room 
temperature for 10 min. All kinds of cells and organisms treated with R9/GFP 
noncovalent mixtures were described previously.25,26,28 SR9 peptide was mixed  



Transmembrane delivery of arginine-rich cell-penetrating peptides         15 
 
 
with plasmid DNA at a nitrogen/phosphate (N/P) ratio of 3 for 30 min, then 
transferred to another eppendorf tube and incubated with plant cells. After 
incubation for 30 min, SR9/DNA mixtures were removed by washing with 
double deionized water.25 Plant cells were placed on slides after 48 h of 
treatment and observed under the microscope. In protein transduction tests, 100 
nM QDs were premixed with 6 μM SR9 and HR9, respectively for 2 h with 
shaking as previous described.35 Then, these complexes were incubated with 
cells at 37°C CO2 incubator for 30 min. 

 A suite of endocytic modulators and physical procedures were used to study 
mechanisms of internalization. For energy-dependent experiments at 4°C, the 
protocol of protein transduction was the same as above except that all incubations 
were performed at 4°C. Cells were preincubated at 4°C for 30 min before being 
incubated with the protein transduction solution. For endocytic modulator assays, 
cells were treated with either R9/GFP mixtures, R9/DNA mixtures, SR9/QD 
mixtures, or HR9/QD mixtures in the absence or presence of 1 mM of 
N-ethylmaleimide (NEM; Sigma-Aldrich, St. Louis, MO, USA), 2 μM of 
valinomycin (Sigma-Aldrich), 2 μM of nigericin (Fluka Chemie, Seelze, 
Germany), or 10 mM of sodium azide (Fluka Chemie), respectively. For 
macropinocytosis and cytoskeleton motions, cells were treated in the absence or 
presence of 100 μM of 5-(N-ethyl-N-isopropyl)-amiloride (EIPA; Sigma-Aldrich), 
10 μM of cytochalasin D (CytD; Sigma-Aldrich) or 10 μM of nocodazole 
(Sigma-Aldrich), respectively. To deplete or sequester cholesterol from plasma 
membrane, 5 μg/mL of filipin (Sigma-Aldrich) was added in the 
culture.21,24–30,32,35 
 
2.4. Confocal microscopy 

Images were observed using an inverted TMS microscope (Nikon, Melville, 
NY, USA) equipped with a MD130 CMOS sensor (Electronic Eyepiece, Dar-An, 
Taiwan) or an Eclipse E600 microscope (Nikon) and recorded using a Penguin 
150CL cooled CCD camera (Pixera, Los Gatos, CA, USA). Bright-field, GFP, 
and blue fluorescent protein (BFP) images were recorded using a BD Pathway 
435 System (BD Biosciences, Franklin Lakes, NJ, USA) as previously 
described.35 Excitation filters were set at 377/50 and 482/35 nm for blue and green 
fluorescence, respectively. Emission filters were set at 435LP (long-pass) and 
536/40 nm for BFP and GFP channels, respectively. Transmitted light without the 
excitation filter, but with 536/40 nm emission filter, was used to observe cell 
morphology as bright-field images. Fluorescent images were acquired by the TCS 
SL confocal microscope system (Leica, Wetzlar, Germany), and relative 
intensities of fluorescent images were quantified by the UN-SCAN-IT software 
(Silk Scientific, Orem, UT, USA) as previously described.28 
 
2.5. Flow cytometric analysis 

Cells in the control and the experimental groups were harvested and analyzed 
using a Cytomics FC500 Flow Cytometer (Beckman Coulter, Fullerton, CA,  
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USA) as previously described.28 In brief, FL1 filter (excitation 488 nm and 
emission 515–545 nm) was used for GFP detection. Samples were counted and 
analyzed by the CXP software. 
 
2.6. Statistical analysis 

Results were expressed as mean ± standard deviation (SD). Mean values and 
SDs were calculated from at least three independent experiments carried out in 
triplicates per treated group. Statistical comparisons between the control and 
treated groups were performed by the Student's t-test. The levels of statistical 
significance were set at P < 0.05 (*) and P < 0.01 (**). 
 
 
3. Results 
 
3.1. The mechanism of transmembrane delivery of protein by R9 

To assess whether arginine-rich CPPs can deliver protein into live cells, 
human A549 cells were treated with PBS as a control, or R9-GFP fusion protein 
without fixation followed by treatment with Hoechst 33342. No green signal was 
observed in the cells treated with PBS as a negative control (Fig. 1) or GFP alone 
(data not shown) using a BD Pathway 435 System. In contrast, green fluorescence 
was visible in the cells treated with R9-GFP. Merged images revealed R9-GFP 
association with the nucleus. These results indicate that R9 peptide mediates the 
translocation of GFP cargo protein. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Cellular entry of R9-GFP into A549 cells. Cells were treated with PBS 
(control) or 30 μM of R9-GFP for 30 min at 37°C, followed by treatment of 

Hoechst 33342, as previously described.35 GFP fluorescence indicates the location 
of CPP, while the BFP signal shows the location of the nucleus. Images of 

bright-field, GFP, and BFP channels are shown using a BD Pathway 435 system. 
Overlap between peptide/protein and nuclei exhibits cyan color in the merged 

GFP and BFP images. 
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4. Discussion 
 

In pharmacology, endosome forming disrupting drugs (valinomycin and 
nigericin), a metabolism depression drug (sodium azide), and generally 
endocytic inhibitors (NEM and 4°C) were thought to interfere with the 
classical endocytosis.41–43 Our data demonstrate that arginine-rich CPP/cargo 
complexes enter cells through macropinocytosis, direct membrane 
translocation, or multiple endocytic pathways (Fig. 2–4). Direct membrane 
translocation is an energy-independent pathway, including pore formation, 
inverted micelle formation, carpet-like perturbation, and membrane thinning 
model.44,45 It is generally observed only at high CPP concentrations or with 
primary amphipathic CPPs.46 However, we reason that HR9 penetrate cells by 
pore formation because of the imidazole functional group on its histidine 
residues.35 

Endocytosis is classified into two categories: phagocytosis that involves 
the uptake of large particles and pinocytosis that involves solute uptake.44 
Macropinocytosis, clathrin-dependent, caveolin-dependent, and 
clathrin/caveolin-independent pathways are forms of pinocytosis.47 Many 
factors affect the route and efficiency of cellular uptake. With CPPs, number of 
positive charges, conformation, length of the peptide, hydrophobicities, and 
concentration influence the uptake.44 Recently, both arginine length of CPP 
and hydrophobicity of cargo were proven to be important factors for direct 
membrane translocation.48,49 In CPP-mediated co-transport, the nature of 
cargo, cargo size, and method of cargo/CPP association determine the 
preferred translocation mechanism.44,48 Our studies also provided the evidence 
that factors, such as cell types, temperature, and incubation time, influence the 
uptake mechanism.44,48–50 

 Arginine-rich CPPs are very attractive, nontoxic candidates for the delivery 
of bio-imaging and therapeutic macromolecules, such as QDs, proteins, and 
nucleic acids.20–38 Their safety has been confirmed by metabolic analysis.51 In the 
present study, we have used pharmacological modulators and physical treatments 
to demonstrate that arginine-rich CPP/cargoes can be internalized via 
macropinocytosis, direct membrane translocation, or a combination of multiple 
pathways. The specific route of internalization is influenced by the nature of the 
CPP, the nature of the cargo, and the nature of the CPP/cargo association. 
 
 
5. Conclusion 
 

In this study, we demonstrated that types of CPPs and cargoes are two 
primary factors in determining the mechanisms of transmembrane delivery. All of 
mammalian cells, plant cells, and cyanobacteria were sensitive with varying 
degrees to macropinocytosis inhibitors EIPA and CytD, indicating that  
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macropinocytosis is a route for R9/GFP internalization. Our data suggested that 
different arginine-rich CPPs (SR9 and HR9) carrying the same cargoes (QDs) 
induce different responses of membrane action. While SR9/QD entered 
mammalian cells via multiple pathways, the uptake of HR9/QD was a direct 
membrane translocation in an energy-independent manner. In the case of the same 
CPPs, R9/GFP crossed membranes by macropinocytosis while the cellular uptake 
mechanism of R9/DNA was a combination of multiple pathways. 
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