
Transforming Cyber-Physical System Models

Nathan Jarus
Ph.D. Candidate

Department of Electrical and Computer Engineering
Advisors: Dr. Sahra Sedigh Sarvestani and Dr. Ali Hurson

ISC Graduate Research Symposium

26 April 2017

1 / 18



Introduction

I Cyber-physical systems (CPSs) are characterized by tight
integration between a physical network and a cyber network
that monitors and controls the physical network.

I Can be used to build sustainable, dependable infrastructure:
I Make existing physical networks more dependable.
I Reduce the physical resources needed to build new

infrastructure.
I Incorporate information about the whole system in decision

making.

I Examples:
I Smart grids
I Intelligent water distribution networks
I Intelligent transportation systems

2 / 18

Computing Devices

Information flow
(sensor data)

Information flow
(commands)

Sensor

Physical commodity flow (water)

Reservois (source)

Consumer (sink)

Valve
(control device)



Motivation

I Designing cyber-physical systems requires constructing
multiple models of each design:
I Performance models
I Dependability models (reliability, resilience, survivability, etc.)

I Modeling challenges:
I How do you avoid the need to reconstruct each model every

time the system design changes?
I How do you make sure each model is derived from the same

system attributes?

I Identifying and understanding relationships between system
attributes improves our understanding of complex system
behavior and improves the accuracy of the models.

3 / 18



Objective

Create a metamodeling framework that enables
provably correct system model transformation.

Model transformation converts a model of one type, e.g., a
survivability model, to a model of another type, e.g., a reliability
model.

Model transformation techniques:

I Reduce the effort required to model complex systems.

I Reduce errors in the modeling process.

I Enable cross-domain application of modeling approaches.
4 / 18



Related Work: Model Transformation

I Graph transformation: Models are represented by graphs and
transformed through graph rewriting.
I Projects: AToM3 (McGill, 2002), CHESS (Intecs, Italy, 2016),

CONCERTO (Intecs, Italy, 2015)

I Class inheritance transformation: Models are instances of
classes in an object-oriented class hierarchy.
I Projects: OsMoSys (University of Napoli, 2007), SIMTHESys

(University of Napoli, 2016)

I Coalgebraic transformation: Models are coalgebras in a lattice
of possible transformations.
I Projects: Rosetta (University of Kansas, 2012)

5 / 18



Open Problems

Our work is necessary because:
I Existing approaches, such as graph or class inheritance

transformation, are difficult to apply or inapplicable to certain
model types.
I In particular, relating discrete- and continuous-time models is a

challenge.
I This challenge is critical to address for CPSs.

I Model transformation techniques must exhibit two attributes:
I Correctness: the inferred model describes the same system as

the source model
I Specificity: the inferred model contains at least as much

information as possible from the source model

Of these attributes, correctness is only addressed by Rosetta,
and to our knowledge no approaches address specificity.

6 / 18



Open Problems

Our work is necessary because:
I Existing approaches, such as graph or class inheritance

transformation, are difficult to apply or inapplicable to certain
model types.
I In particular, relating discrete- and continuous-time models is a

challenge.
I This challenge is critical to address for CPSs.

I Model transformation techniques must exhibit two attributes:
I Correctness: the inferred model describes the same system as

the source model
I Specificity: the inferred model contains at least as much

information as possible from the source model

Of these attributes, correctness is only addressed by Rosetta,
and to our knowledge no approaches address specificity.

6 / 18



Transformation

Model1 Model2
Transformation

I How do we define transformations between very different
models?
I For example, transforming a model of a nonfunctional attribute

into a performance model
I Can we always make a well-defined mapping from one model

of type 1 to exactly one model of type 2?

I The task is complicated by a potential lack of transitivity:
I Transforming Model1 →Model2, then Model2 →Model3

may not be equivalent to directly transforming
Model1 →Model3.

7 / 18



Transformation

Model1 Model2
Transformation

I How do we define transformations between very different
models?
I For example, transforming a model of a nonfunctional attribute

into a performance model
I Can we always make a well-defined mapping from one model

of type 1 to exactly one model of type 2?

I The task is complicated by a potential lack of transitivity:
I Transforming Model1 →Model2, then Model2 →Model3

may not be equivalent to directly transforming
Model1 →Model3.

7 / 18



Original Research Contribution

The intended original research contribution of this
work is the creation of a model transformation
method based on abstract interpretation.

I Each system has concrete semantics which we capture via
properties.

I Models’ semantics approximate the semantics of the system
they model.

I We concretize system properties from models of that system.

I We abstract semantically consistent models from a set of
properties.

I We demonstrate that this technique is both correct and
specific.

8 / 18



Concretization

Properties

Model1 Model2

Concretization Abstraction

I It is always feasible to concretize
system properties from a given
model.

I However, the information present
in the concretized properties may
be insufficient to construct a single
model of a different type.


p 0 q 0
0 p 0 q
0 0 1 0
0 0 0 1


Dependencies

Topology

Concretization

?

9 / 18



Concretization

Properties

Model1 Model2

Concretization Abstraction

I It is always feasible to concretize
system properties from a given
model.

I However, the information present
in the concretized properties may
be insufficient to construct a single
model of a different type.


p 0 q 0
0 p 0 q
0 0 1 0
0 0 0 1


Dependencies

Topology

Concretization

?

9 / 18



Abstraction

Properties

P(Model1) P(Model2)

Model1 Model2

m 7→ {m}

Concretization Abstraction

Selection

To generate a model of type 2 from a given model of type 1:
I We first concretize the properties of the type 1 model.
I Then, we abstract a set of type 2 models from these

properties.
I A single type 2 model is selected from the resulting set.

10 / 18



Abstraction

Properties

P(Model1) P(Model2)

Model1 Model2

m 7→ {m}

Concretization Abstraction

Selection

To generate a model of type 2 from a given model of type 1:
I We first concretize the properties of the type 1 model.
I Then, we abstract a set of type 2 models from these

properties.
I A single type 2 model is selected from the resulting set.

10 / 18



Specificity

I More comprehensive sets of properties yield greater specificity.
I Greater specificity leads to fewer possible inferred models.
I The selection process requires incorporation of information

not present in the initial model.

Properties

P(Model1) P(Model2)

Model1 Model2

m 7→ {m}

Concretization Abstraction

Selection

11 / 18



Correctness

The inferred models are consistent with the properties underlying
the initial model.

I Abstraction(Concretization(m)) = m
I Start with a set of models m.
I Concretize properties from that set.
I Then, abstract a set of models of the same type: the result

must be the initial set m!

I Concretization(Abstraction(p)) w p
I Start with a set of properties p.
I Abstract a set of models from that set.
I Concretize properties from those models: the properties must

be consistent with p!

12 / 18



Example: MIS Reliability Model

I The Markov Imbedded Structure (MIS) technique can be used
to derive system reliability from individual component
reliability.

I Each state in the Markov chain (S0 − S3) corresponds to a
combination of functional and failed system components.

I State transitions resulting from the behavior of c1 are
captured by P(c1).

I c1 and c2 have the same reliability p = 1− q.

Components

States c1 c2 System

S0 1 1 Works

S1 1 0 Works

S2 0 1 Works

S3 0 0 Fails

P(c1) =


p 0 q 0
0 p 0 q
0 0 1 0
0 0 0 1



P(c2) =


p q 0 0
0 1 0 0
0 0 p q
0 0 0 1


13 / 18



Example: MIS Reliability Model

I Π0 is the initial state probability vector.

I The vector u identifies the states that are considered
functional; here, both lines must fail for the system to fail.

I System reliability is then given by R.
I We assume the behavior of each component is independent.

Π0 = [1, 0, 0, 0]

u = [1, 1, 1, 0]

R = ΠT
0 ∗ P(c1) ∗ P(c2) ∗ u

= p2 + 2pq

S0 S1 S2 S3

p00(c1)

p02(c1)

p11(c1)

p13(c1)

p22(c1) p33(c1)

p00(c2)

p01(c2)

p11(c2) p22(c2)

p23(c2)

p33(c2)

14 / 18



Example: Concretized Properties of the MIS Model

I We can extract per-component reliabilities and overall system
reliability.

I We can also extract dependencies among sets of components
and the conditions under which the system fails.
I We represent this as sets of causes (original component

failures) and effects (subsequent component or system
failures).

Cause Effect

{c1} ∅
{c2} ∅
{c1, c2} {S}

(S denotes the system as
a whole.)

Intuitively:

I The system is considered functional
if either or both of the components
are functional.

I The failure of each component is
independent of the other.

15 / 18



Example: Abstraction of a Topological Model

I The set of topology models abstracted from these properties
is infinite.

I We can abstract topological semantics from our system
properties and use those to guide construction of a topological
model.

I First, we stipulate that c1 and c2 are lines in a power grid.

I These components can carry a maximum current represented
by capacity(c1) and capacity(c2).

I There are two additional components: a generator, c3, and a
load, c4.

I The generator has a maximum supply supply(c3) and the load
a demand, load(c4).

16 / 18



Example: Abstraction of a Topological Model

I The set of topology models abstracted from these properties
is infinite.

I We can abstract topological semantics from our system
properties and use those to guide construction of a topological
model.

I First, we stipulate that c1 and c2 are lines in a power grid.

I These components can carry a maximum current represented
by capacity(c1) and capacity(c2).

I There are two additional components: a generator, c3, and a
load, c4.

I The generator has a maximum supply supply(c3) and the load
a demand, load(c4).

16 / 18



Example: Abstraction of a Topological Model

I We can constrain supply(c3) ≥ load(c4), otherwise the system
would never be functional.

I Placing c1 and c2 in series would result in a system failure if
either fail.

I Therefore, c1 and c2 must be placed in parallel.

I Furthermore, capacity(c1) ≥ load(c4) and
capacity(c2) ≥ load(c4).

The resulting system topology is shown below:

Generator

c3

Load

c4
c1

c2

17 / 18



Conclusions

I We presented a model transformation approach that has been
proven to be correct and specific.

I It can be used to transform models across domains.

I It can also facilitate transformation between models of
nonfunctional and functional attributes.

I We have demonstrated an example of both the correctness
and specificity of our approach: we abstract a specific model
from the properties of another model.

I This research can accelerate advances in design and analysis
of complex systems by enabling cross-domain transfer of
knowledge.

This work is done in collaboration with Jaxson Johnston.

This work is supported by the Intelligent Systems Center at Missouri University
of Science and Technology

18 / 18



Graph Transformation

I Formulate models as graphs and model transformation as
rewriting of the graphs.

I Each model type has a meta-model that describes how its
graph can be transformed to graphs of other model types.

I Applies to many formalisms, including Petri nets and Markov
chains, but not all.

I Projects: AToM3, CHESS, CONCERTO
I CHESS and CONCERTO are more focused on modeling

multi-core computer systems.

back

1 / 4



Class Inheritance Transformation

I Each model type corresponds to a class in an object-oriented
class hierarchy.

I Models are instances of their type’s class.

I Transformation occurs by using inheritance principles to
convert a model from one type to another.

I Easy to travel ‘up’ the class hierarchy; hard to travel back
‘down’.

I Projects: OsMoSys, SIMTHESys

back

2 / 4



Coalgebraic Transformation

I Each modeling formalism is described as a coalgebra – a
mathematical system useful for describing transitions among
states.

I The coalgebras are placed in a lattice to provide a structure
for determining which transformations can be performed.

I Can relate different types of models of the same system, such
as a model of system functionality and a model of system
power consumption.

I Projects: Rosetta

back

3 / 4



Related Work: Model Composition

I A hierarchical approach is most commonly taken.
I Build subsystem-level models and link them together into

system-level models.
I Subsystem models may be of different types
I Example: composing a discrete-time model of control software

and a continuous-time model of a water valve

I Projects: Ptolemy (Berkeley, 2018), Möbius (University of
Illinois, 2015)

I Both projects typically involve models of functional attributes
and are created to facilitate system simulation.

4 / 4


	Introduction
	Related Work
	Approach
	Example
	Appendix

